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Past efforts to improve plant tolerance to drought, high salinity
and low-temperature through breeding and genetic
engineering have had limited success owing to the genetic
complexity of stress responses. Progress is now anticipated
through comparative genomics studies of an evolutionarily
diverse set of model organisms, and through the use of
techniques such as high-throughput analysis of expressed
sequence tags, large-scale parallel analysis of gene
expression, targeted or random mutagenesis, and gain-of-
function or mutant complementation. The discovery of novel
genes, determination of their expression patterns in response
to abiotic stress, and an improved understanding of their roles
in stress adaptation (obtained by the use of functional
genomics) will provide the basis of effective engineering
strategies leading to greater stress tolerance. 
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Abbreviations
ABA abscisic acid
EST expressed sequence tag
GFP green fluorescent protein
LUC firefly luciferase
MAP mitogen-activated protein
mRNP messenger ribonucleoprotein
NEST nuclear expressed sequence tag
ORF open reading frame
QTL quantitative trait locus
SAGE serial analysis of gene expression
SOS salt overly sensitive

Introduction
Environmental factors that impose water-deficit stress,
such as drought, salinity and temperature extremes, place
major limits on plant productivity [1]. To overcome these
limitations and improve production efficiency in the face
of a burgeoning world population, more stress tolerant
crops must be developed [2•]. Traditional breeding strate-
gies that have attempted to utilize genetic variation
arising from varietal germplasm, interspecific or inter-
generic hybridization, induced mutations and somaclonal
variation of cell and tissue cultures have met with only
limited success; very few new plant introductions with
improved stress resistance under field conditions have
resulted [3]. Traditional approaches are limited by the
complexity of stress tolerance traits, low genetic variance
of yield components under stress conditions and the lack
of efficient selection techniques [4–7]. Furthermore,

quantitative trait loci (QTLs) that are linked to tolerance
at one stage in development can differ from those linked
to tolerance at other stages [8•]. Once identified, desirable
QTLs can require extensive breeding to restore desirable
traits along with the introgressed tolerance trait.
Nonetheless, marker-assisted selection of specific sec-
ondary traits that are indirectly related to yield (e.g. the
interval between anthesis and silking [4,5], osmotic
adjustment [9], membrane stability [7] or physiological
tolerance indices [6]) might prove increasingly useful as
the resolution of the genetic and physical chromosome
maps of the major crops improves. This strategy could be
used in combination with ‘pyramiding’ strategies or con-
secutive selection for, and accumulation of, physiological
yield-component traits [3]. 

Genetic engineering of tolerance traits 
In contrast with traditional breeding and marker-assisted
selection programs, the direct introduction of a small num-
ber of genes by genetic engineering seems to be a more
attractive and rapid approach to improving stress tolerance.
Present engineering strategies rely on the transfer of one or
several genes that encode either biochemical pathways or
endpoints of signaling pathways that are controlled by a
constitutively active promoter. These gene products pro-
tect, either directly or indirectly, against environmental
stresses (Table 1) [10•,11,12,13•]. Engineered overexpres-
sion of biosynthetic enzymes for osmoprotectants
[13•,14,15••,16], scavengers of reactive oxygen species
[13•,17•] and stress-induced proteins (e.g. cold-regulated
[COR] or late embryogenesis abundant [LEA]) [18,19] are
among the approaches reported.

Ion transport and maintenance of ion homeostasis can pro-
foundly effect plant growth and productivity [20•], a point
that is well illustrated by the recent demonstration that the
moderate overexpression of a homologous cDNA encoding
a sodium/proton antiporter can confer improved salinity tol-
erance on Arabidopsis (21••). Halophytes might also have
evolved distinct stress-recognition or signaling pathways,
and regulatory controls that confer stress protection ([22••];
BJ Barkla, R Vera-Estrella, J Camacho-Emiterio, O Pantoja,
personal communication). Alternatively, ‘regulon’ engi-
neering with stress-specific transcription factors, which
control the expression of a set of stress-adaptive proteins,
has been used to improve salinity, drought, or  freezing tol-
erance ([23•,24•,25,26••]; MA Villalobos, G Iturriaga,
personal communication). Similarly, the expression of com-
ponents of stress signaling pathways (e.g. constitutively
active yeast calcineurin) has been used to achieve bio-
chemical ‘pathway’ engineering involving multiple targets
for salinity stress tolerance by improving ion homeostasis
[27]. The success of these approaches has generally been
limited by a lack of understanding of metabolic flux,
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compartmentation and function [11,15••,26••]. A more
complete understanding of the complexity and interplay of
osmotic, desiccation and temperature tolerance mecha-
nisms, and their corresponding signaling pathways, is
therefore needed and will come from integrative, whole-
genome studies [28,29].

Gene discovery in glycophytes
The first step towards cataloging and categorizing geneti-
cally complex abiotic stress responses is the rapid
discovery of genes by the large-scale partial sequencing of
randomly selected cDNA clones or expressed sequence
tags (ESTs) (Figure 1). Extensive EST collections already
exist for Arabidopsis [30] and rice [31]. Large-scale EST

sequencing initiatives are also well under way for various
crop species [32•] including cotton, Medicago truncatula,
maize, soybean, tomato and sorghum and also for Loblolly
pine (http://www.nsf.gov/bio/pubs/awards/genome99.htm).
The number of tags available in the rapidly growing EST
collections in the public domain can be followed at the
dbEST section of GenBank (http://www.ncbi.nlm.nih.gov/
dbEST/dbEST_summary.html). These sequencing efforts
have generated collections in which more than half of the
total gene complement (i.e. ~28,000 genes) is represented
(as estimated from the gene content of the entirely
sequenced chromosome 2 in Arabidopsis [33]). The collec-
tions are, however, biased towards high to moderate
abundance classes that are derived from different tissues,
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Table 1

The complexity of stress adaptation: major targets for engineered stress tolerance.

Class of target Examples Possible mode(s) of action

Osmoprotectants Amino acids (proline, ectoine) Osmotic adjustment; protein/membrane
Dimethyl sulfonium compounds (glycine betaine, DMSP) protection; reactive (OH?) scavenging
Polyols (mannitol, D-ononitol, sorbitol)
Sugars (sucrose, trehalose, fructan)

Reactive oxygen Enzymatic (catalase, Fe/Mn superoxide dismutase, Detoxification of reactive oxygen species
scavengers ascorbate peroxidase; glutathione cycle enzymes: 

glutathione S-transferase, glutathione peroxidase; 
gamma-glutamylcysteine synthetase, alternative oxidase)

Non-enzymatic (ascorbate, flavones, carotenoids, anthocyanins)

Stress proteins Late embyogenesis abundant proteins Unknown, protein stabilization, water binding/
slow desiccation rates; chaperones; protein/
membrane stabilization; ion sequestration

Heat shock proteins Various heat-, cold-, salt-shock proteins in several Reversal/prevention of protein unfolding;
subcellular compartments translational modulation

Ion/proton transporters High-affinity K+ transporter; low-affinity K+ channels; plasma K+/Na+ uptake and transport; establishment of 
membrane, pre-vacuolar, vacuolar and organellar proton proton gradients; removal and sequestration of
ATPases and ion transporters (H+/ATPase; Na+/H+ antiporters) (toxic) ions from the cytoplasm and organelles 

Membrane fluidity Fatty acid desaturases Increased amounts of dienoic and fluidity;
chilling tolerance

Water status Aquaporins or water channels (solute facilitators: urea, glycerol, Regulation of AQP amount differentially in 
CO2, possibly others and including ions); CO2 concentration tonoplast and plasma membrane; regulation 

of membrane location; stomatal behavior

Signaling components Homologs of histidine kinases (AtRR1/2); Ca2+-sensors/phosphorylation mediated 
MAP kinases (PsMAPK, HOG); signal transduction
Ca2+-dependent protein kinases; SNF1/kinases; protein

phosphatases (ABI1/2); CNA/B signaling systems; 
Ca2+ sensors (SOS3); inositol kinases

Control of transcription Transcription factors: EREBP/AP2 (DREB, CBF); Upregulation/activation of transcription 
zinc finger TF (Alfin 1); Myb (AtMyb2, CpMyb10)

Growth regulators Altered biosynthetic pathways or conjugate levels for Changes in hormone homeostasis
abscisic acid, cytokinins and/or brassinosteroids

ABI, abscisic-acid-insensitive; AP2, APETELA2; AQP, aquaporin;
AMPK1, AMP-activated protein kinase; AtMyb, Arabidopsis thaliana
myeloblastosis (helix-loop-helix) transcription factor; AtRR1, A. thaliana
two-component response regulators; CBF, C-repeat/DRE binding factor;
CNA/B, calcineurin A/B; CpMyb, C. plantagineum myeloblastosis

(helix-loop-helix) transcription factor; DMSP, dimethylsulfoniopropionate;
DREB, dehydration-responsive element (DRE) binding protein;
EREBP, ethylene-responsive element binding protein; HOG, high
osmolarity glycerol; PsMAPK, Pisum sativum mitogen-activated protein
kinase; SNF1, sucrose non-fermenting 1; TF, transcription factor.
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organs or cells; different developmental states; various
external stimuli such as heat-shock or nitrogen starvation;
and treatments with plant growth regulators (e.g. 6-benzy-
ladenine or gibberellin). In contrast, relatively few studies
have focused specifically on ESTs from plants that have
been exposed to environmental stresses. 

Initial attempts to identify stress-specific transcripts using
EST approaches were conducted in glycophytic vascular
model plant species that were exposed to salinity stress.
The random sequencing of 780 ESTs from rice cell-sus-
pension cultures that were exposed to salinity (or
nitrogen-starvation stress) revealed that salinity stress
induced the expression of several enzymes related to gly-
colysis and the tricarboxylic acid cycle, which contribute to
ATP production [34]. The sequencing of 220 randomly
chosen ESTs from a subtracted Arabidopsis cDNA library
identified 15 osmotic-stress-induced genes that had early,
late or continuous patterns of expression, and which were
induced 2–50-fold by exposure to osmotic stress [35]. The
scarcity of ESTs that are derived from cDNAs of stressed
tissues of glycophytes suggests that stress-relevant tran-
scripts are under-represented or absent from existing EST
collections. In an attempt to redress this deficiency, large-
scale EST sequencing is now in progress using
tissue-specific and developmental-stage-specific cDNA
libraries generated from the RNA of salinity-stressed
Arabidopsis and rice. The cDNA libraries investigated are
listed at http://www.biochem.arizona.edu/BOHNERT/
functgenomics/front2.html. Current EST data sets can be
browsed and searched on-line at the Stress Functional
Genomics Consortium website (http://stress-genomics.org/).

As part of the gene discovery effort in maize, EST collec-
tions are also being established from libraries of cDNA that
has been prepared from salt-stressed roots and shoots
(http://www.zmdb.iastate.edu/zmdb/EST_project.html).

Gene discovery in stress-tolerant models 
Although functional adaptation mechanisms are likely to
be largely conserved among glycophytes (Table 1), halo-
phytic organisms have evolved additional structural or
regulatory differences that account for their ability to with-
stand severe osmotic or ionic stress ([22••]; BJ Barkla,
R Vera-Estrella, J Camacho-Emiterio, O Pantoja, personal
communication). To identify these potential differences,
major EST sequencing efforts have been initiated for the
halophyte Mesembryanthemum crystallinum and the halotol-
erant green alga Dunaliella salina [36]. Comparative
sampling of approximately equal numbers (~1200) of ESTs
from the leaf tissue of well-watered and salinity-stressed
M. crystallinum revealed that the stressed plants expressed
~15% more functionally unknown genes than the
unstressed plants [37]. This finding supports the notion
that ESTs that are related to salinity stress are under-rep-
resented in the current non-redundant GenBank database.
Furthermore, only 13% of the non-redundant ESTs in this
relatively small M. crystallinum data set are expressed in
both well-watered and salt-stressed plants, thus highlight-
ing the dramatic alteration in gene-expression profile that
accompanies stress treatment. Sampling differences
between unstressed and stressed plants also revealed pro-
nounced downregulation of transcript abundance for
components of the photosynthetic apparatus and a con-
comitant upregulation of constituents involved in either
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Figure 1
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proteome restructuring (e.g. proteases and ubiquitinases)
or adaptation to osmotic and dehydration stress.

Some bryophytes, such as Tortula ruralis [38], and vascu-
lar plants, such as the resurrection plants, Craterostigma
plantagineum [39•], Selaginella lepidophylla [40] and
Sporobolus stapfianus [41], have evolved tolerance of des-
iccation in their vegetative tissues. T. ruralis
gametophytes rely on a constitutive protection system,
coupled with an active rehydration-induced recovery
mechanism, to restrict damage during rehydration.
During slow drying, large (>150 kDa) messenger ribonu-
cleoprotein (mRNP) particles form in the vegetative cells
and permit the rapid restoration of protein synthesis fol-
lowing rehydration, thereby facilitating the survival of the
desiccated tissues [38]. Sequencing of a limited sample of
152 ESTs from a library of cDNA obtained from polyso-
mal mRNP fractions of a desiccated moss, T. ruralis,
showed that the majority (~70%) of the ESTs represent-
ed novel sequences. The sequencing of such EST
collections should help to define the range of gene prod-
ucts that are essential for cellular repair and recovery after
vegetative desiccation [42••]. EST collections have also
been initiated for Physcomitrella patens, a moss model sys-
tem that has efficient gene targeting [43]. To identify
genes that are associated with desiccation tolerance, 169
ESTs were characterized from P. patens protonema fol-
lowing treatment with abscisic acid (ABA). Most of the
ESTs (69%) shared homology with known sequences,
although many of the clones encoded proteins that are
induced as part of the heat tolerance, cold acclimation,
oxidative stress adaptation or xenobiotic detoxifica-
tion responses [43].

In contrast with bryophytes, Craterostigma plantagineum,
Selaginella lepidophylla and Sporobolus stapfianus use one or
more mechanisms, which are induced by ABA and/or dry-
ing, to accumulate molecules, such as LEA proteins and
sugars (e.g. sucrose, raffinose or trehalose), that are
involved in the establishment of cellular protection prior
to desiccation. Bockel, Salamini and Bartels [39•] used dif-
ferential, subtractive or cold-plaque screening of
200 cDNA clones from C. plantagineum leaves that had
been either dried for 1 h or totally dried down [39•]. One
half of the sequences showed no significant similarity to
those in public databases; of those sequences with a pre-
dicted function, 6% and 58% were upregulated or
transiently upregulated by dehydration, respectively,
whereas 35.8% were downregulated by dehydration [39•].
Using cDNA clones from S. stapfianus, genes encoding
abundant drought-induced proteins that are correlated
with desiccation tolerance, or low-abundance transcripts
that encode gene products not previously associated with
drought stress, have been isolated by differential screen-
ing [41] or by cold-plaque hybridization procedures [44•],
respectively. Hence, resurrection plants may possess
unique gene complements or regulatory processes that
contribute to desiccation tolerance. Furthermore, this

hypothesis is supported by an earlier proteomic
comparison of S. stapfianus with a closely related desicca-
tion-sensitive species, S. pyramidalis, that revealed a set of
12 novel proteins that are probably associated with desic-
cation tolerance [45].

High-throughput stress-specific gene
expression analysis 
In Arabidopsis, the precise function of approximately half
of all predicted protein-coding genes deduced from amino
acid sequence information remains unknown [29,30,33]. In
the absence of other information, differential expression
patterns often provide clues to gene function and are an
important criterion for exploiting EST resources on a large
scale [46••]. Analysis of variation in the frequency of indi-
vidual tags reveals the differential expression of the
corresponding genes, but this ‘digital northern’ approach
identifies only the most abundant, significantly upregulat-
ed or downregulated genes. We can gain confidence that
differences in EST frequency, particularly for rare tran-
scripts, are significant only by increasing the sampling size
of the EST collections [47]. Alternatives, such as serial
analysis of gene expression (SAGE), have been developed
for rapidly quantifying the occurrence of large numbers of
transcripts in a particular population. With a 9–12-base size
for each tag, SAGE unambiguously identifies individual
transcripts, yet improves the efficiency (up to 40-fold) of
generating extremely large EST databases by sequencing
multiple tags within a single clone [48]. Another alterna-
tive, called nuclear expressed sequence tag (NEST)
analysis, combines fluorescence-assisted nucleus sorting
and cDNA generation (based on the expression of nucle-
us-targeted green fluorescent protein [GFP], which is
controlled by a cell-specific promoter) from the RNA of
isolated nuclei [49••]. The RNA from such preparations
accurately reflects nuclear transcript abundance, avoiding
the influence of post-transcriptional turnover in the
cytosol. Cell--specific cDNAs can be characterized by dif-
ferential-display reverse transcriptase-mediated PCR or by
EST analysis. In tobacco, approximately 25% of salinity-
induced transcripts identified by NEST analysis show
significant homology to functionally unknown genes
(C-P Song, DW Galbraith, personal communication). 

To obtain novel insights into gene function and the regu-
latory control of biological processes that are associated
with stress responses to drought, salinity or freezing,
cDNA microarrays offer a high-throughput approach to
obtaining comprehensive gene expression profiles
[50,51,52•]. High-throughput parallel gene expression
monitoring, using cDNA microarray-based methods, has
been used to examine gene expression patterns in tissues
including root, leaf and flowers at two different stages of
development [53,54], and under dark and light conditions
[55]. Large-scale cDNA microarray analyses of the expres-
sion profiles of genes that respond to salinity-stress are
underway for M. crystallinum (M Cushman et al., unpub-
lished data), rice (S Kawasaki et al., unpublished data), and
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Arabidopsis (M Deyholos, D Galbraith, personal communi-
cation). Although these analyses will assess only a small
fraction of the entire gene complement, until more com-
prehensive EST collections are available, they will provide
an important starting point for prioritizing unknown genes
for further functional analysis. 

Comprehensive genome-wide surveys of stress-responsive
gene expression using microarrays are, however, currently
possible in single-celled model organisms, including
Synechocystis sp. PCC 6803 and Saccharomyces cerevisiae,
whose entire genome sequence is known. A recent analy-
sis of yeast cells exposed to hyperosmotic shock (1 M NaCl
for 0–90 min) revealed that ~300 transcripts (~5% of all
open reading frames [ORFs]) showed a > two-fold increase
in transcript abundance, whereas ~200 genes were down-
regulated to a similar extent (J Yale et al., unpublished
data). Genes involved in energy metabolism, ion home-
ostasis, cell defense, chaperone functions and transport
facilitation were most strongly upregulated. These analy-
ses are expected to provide the first functional information
about the role of unknown ORFs in cellular stress adapta-
tion processes. Closer analysis of expression data sets has
also indicated that a number of these upregulated ORFs in
S. cerevisiae have counterparts in Synechocystis (R Burnap,
unpublished data), Aspergillus nidulans (R Prade, personal
communication), and M. crystallinum after salt stress
(JC Cushman, unpublished data; J Yale, HJ Bohnert,
unpublished data). The comparisons among cyanobacteria,
fungi and plants comprise an aggregate of genes that delin-
eate cellular tolerance mechanisms. 

Equally important for our understanding of cellular
responses will be detailed surveys of gene expression pro-
files that give insight into how plants integrate stress
responses in the context of development and a complex
assortment of tissues (each with differential sensitivities or
susceptibilities to different environmental stresses).
Microarrays will also permit comparisons between one or
more glycophytic (e.g. Arabidopsis and rice), halophytic
(e.g. M. crystallinum) and desiccation-tolerant (e.g. C. plan-
tagineum, S. lepidophylla and S. stapfianus) models, thereby
permitting the identification of differences and similarities
in expression patterns or gene complements that con-
tribute to tolerance of specific stresses such as salinity,
drought and temperature extremes. In addition, microar-
rays offer a rapid and comprehensive technique for
identifying stress tolerance determinants by detecting
transcripts whose expression patterns under stress
conditions differ in mutants that are dysfunctional in bio-
chemical-endpoint or signaling-pathway components from
those in the wild-type (Figure 1). Analyses of the cnb1 and
hog1 yeast mutants, which are defective in a protein phos-
phatase 2B (calcineurin) involved in the signaling of ion
homeostasis, and in a MAP kinase involved in high osmot-
ic stress regulation, respectively, have revealed the target
sets of endpoint genes for each of the important signaling
pathway components that are defective in these mutants

(T Matsumoto et al., unpublished data). Expression pat-
terns alone will not, however, reveal the functions of
unknown stress-regulated genes in yeast and plant ESTs.

Forward and reverse genetics
Intelligent engineering of regulatory circuits will require
detailed knowledge of signaling hierarchies and the impact
of metabolic changes involved in stress responses. Mutant
screens for salinity-hypersensitive Arabidopsis (e.g. ‘salt
overly sensitive’ [SOS]) led to the discovery of important
and novel structural and signaling components that are crit-
ical for stress tolerance. One such mutation, SOS3, was
found to encode a calcineurin B-like Ca2+-binding protein
defective in Ca2+-binding properties that is essential for K+

nutrition and K+/Na+ selectivity in the presence of large
concentrations of Na+ ions [56••]. Interestingly, SOS3 has
recently been shown to interact with the product of a
second SOS locus, SOS2, that encodes a sucrose non-
fermenting/AMP-activated protein kinase (SNF1/AMPK)-
protein kinase involved in the control of Na+/K+ homeosta-
sis (U Halfter, M Ishitani, J Liu, JK Zhu, personal
communication). Conversely, the isolation of Arabidopsis
mutants with improved tolerance of freezing or salinity has
revealed novel regulatory genes for proline biosynthesis
and breakdown [57], and active oxygen detoxification [58•],
respectively. Antisense approaches aimed at dissecting the
roles of key adaptive enzymes, such as ∆1-pyrroline-5-
carboxylate synthetase, have also uncovered functional
roles of proteins that are unrelated to stress tolerance [59]. 

Ultimately, a systematic effort to mutagenize all stress-rel-
evant genes is required to complement information
obtained by gene discovery and expression profiling. To
this end, functional analysis is under way for selected
genes that participate in drought, salinity and low temper-
ature stress-adaptive signaling and responses. The
generation and screening of large T-DNA or transposon
insertional mutant collections of Arabidopsis and rice will
also provide essential resources for finding tagged muta-
tions that lead to defective stress tolerance responses
[60•,61–63]. These populations can be surveyed using
both forward and reverse genetic screens to isolate ‘knock-
out’ mutants that are either tolerant of or hypersensitive to
stress. Activation T-DNA (bialaphos resistance marker and
4X 35S enhancer) tagged collections are being generated
in transgenic Arabidopsis backgrounds in order to isolate
mutations that affect stress signaling. These transgenic
plants express chimeric genes composed of promoters that
are responsive to osmotic potential, cold, stress and ABA
(e.g. RD29A) fused to the coding sequence of firefly
luciferase (LUC) [64]. Luciferase enzyme activity is used
to rapidly identify promoter activity, which, after mutage-
nesis of the plant line, may be enhanced, diminished or no
longer dependent on activation by stress (Figure 1). This
approach has revealed that ABA-dependent and ABA-
independent signaling pathways share considerable cross
talk, through both positive and negative interactions, to
bring about stress-responsive gene expression [65,66]. So
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far, about 90,000 T-DNA-tagged lines in the RD29A-LUC
genetic background have been produced, and mutants
with altered stress signaling or sensitivity have been isolat-
ed. The production of DNA pools for the tagged
population is under way for the reverse genetic identifica-
tion of mutants and will be made available through the
Arabidopsis Stock Center at Ohio State University. 

Targeted ‘knock-out’ and random-insertion stress-sensi-
tive mutants are being generated in Synechocystis sp.
PCC6803, yeast and Aspergillus nidulans. Selected mutant
strains are complemented with expression libraries from
Arabidopsis, rice, tobacco and M. crystallinum to isolate sup-
pressors of stress-sensitive phenotypes. This approach has
resulted in the isolation of plant orthologs of yeast protein
kinases [67,68••,69], transcription factors [70], and signal-
ing components (TK Matsumoto et al., personal
communication). Alternatively, evaluation of salt tolerance
determinants for sufficiency can be performed by overex-
pression in wild-type transgenic plants [27] or by the
suppression of salt-sensitive mutants of Arabidopsis.
Finally, transcriptional or translational GFP-fusion con-
structs can be used to visualize the temporal and spatial
expression patterns of individual genes and the subcellular
location of gene products.

Conclusions
The genomic-scale EST and genome sequencing, and
cDNA microarray analyses that are now under way promise
to rapidly isolate and identify all candidate genes of the
‘osmome’, ‘xerome’ or ‘thermome’ — the gene comple-
ment essential for tolerance of osmotic potential,
desiccation or temperature stresses. As outlined in
Figure 1, the large datasets generated by these efforts will
be integrated and comparisons made between different
cellular and glycophytic, halophytic and xerophytic plant
models to identify the cellular tolerance mechanisms that
are evolutionarily conserved. Mining of these data will
supply a systematic agenda for functional analysis with the
use of tagged mutant collections, complementation and
overexpression tests accompanied by microarray analyses
to reveal hierarchical relationships between specific signal-
ing components and downstream effector genes. 

Understanding specific protein–protein interactions will
require the construction of protein-linkage maps using yeast
two-hybrid technologies. Approaches with proteomics will
be necessary to clarify the structural predictions of genome
sequence information and to assess the protein modifica-
tions and protein–ligand interactions that are relevant to
stress tolerant phenotypes. Ultimately, the functional deter-
mination of all genes that participate in stress adaptation or
tolerance reactions are expected to provide an integrated
understanding of the biochemical and physiological basis of
stress responses in plants. Armed with such information
from established models, it will be possible to rationally
manipulate and optimize tolerance traits for improved crop
productivity well into the twenty-first century.
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