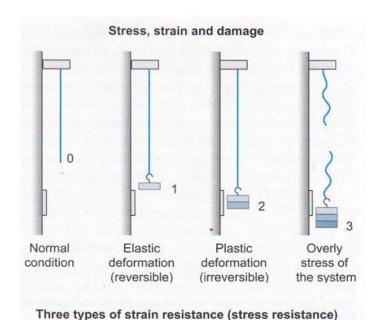
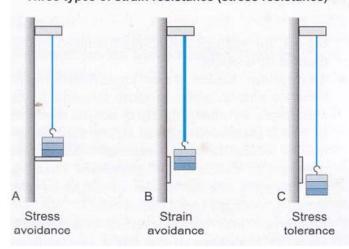
Improving Stress Tolerance

Mitesh Shrestha

Stress

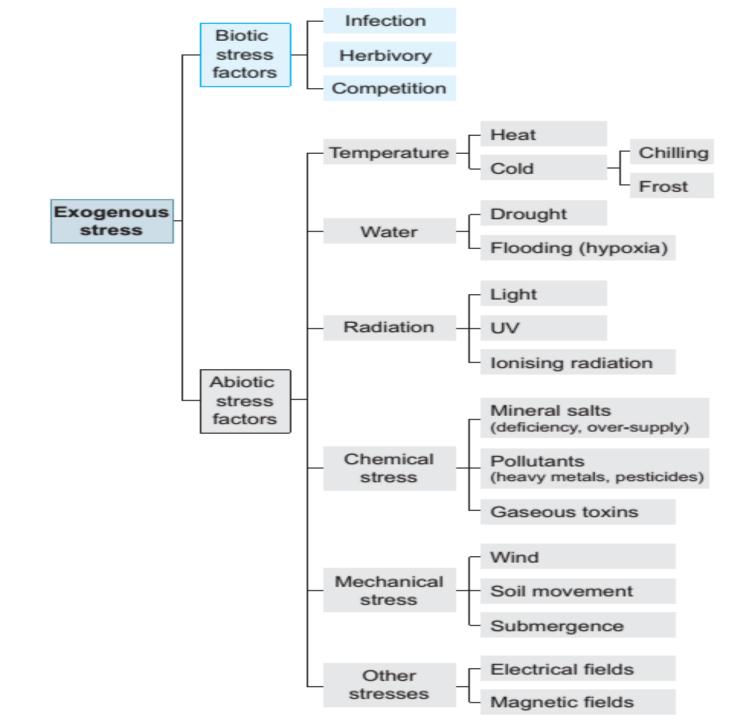

• Product of any physical, chemical or biological changes which disrupts the homeostasis.

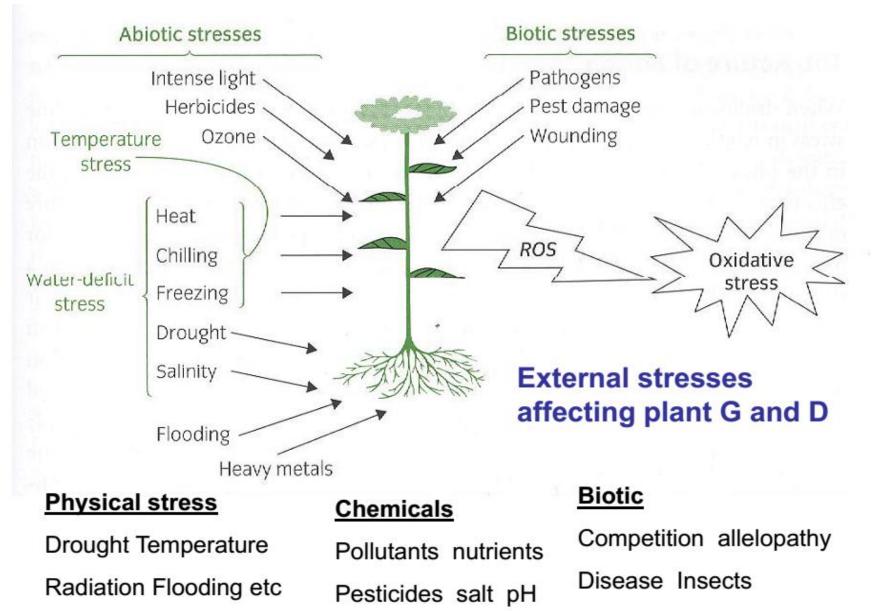

 Results in the initiation of a chain of cellular and systemic events which helps the cells to restore their homeostatic balance.

Stress

- Stress: Optimum range of factors- where best growth and development is observed. Deviation from the range affect physiology. Plants growing are then in stress or tension.
- All stress produce injury- the stress syndrome or strain
- Plant can not escape unfavourable condition by moving away like animal does. They must tolerate
- All biotic and abiotic factors may cause stressare stress factors
- Tolerance to stress- by whole plant or by organs of plant- become normal when stress is over
- Acclimation and hardening

- Zero stress: exposure to most favourable condition
- All plants face environmental stress
- Elastic stress (return to normal after stress when condition become normal) and plastic stress (do not return to normal after stress)
- Resistance mechanism: Tolerance or avoidance/constitutive (sunken stomata) or adaptive (ABA synthesis during stress) mechanism
- Ephimerals- avoid unfavorable conditions


The physical stress concept of Levitt 1980


Plant stress

- Plants are bound to places.
- They, therefore, have to be considerably more adaptable to stressful environments and must acquire greater tolerance to multiple stresses than animals and humans.

Plant stress

- Two primary categories.
 - Abiotic stress is a physical (e.g., light, temperature) or chemical insult that the environment may impose on a plant.
 - Biotic stress is a biological insult, (e.g., insects, disease) to which a plant may be exposed during its lifetime

Symbiosis

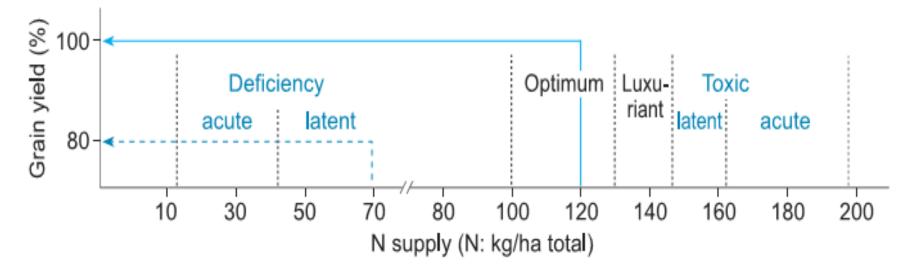
Plant stress

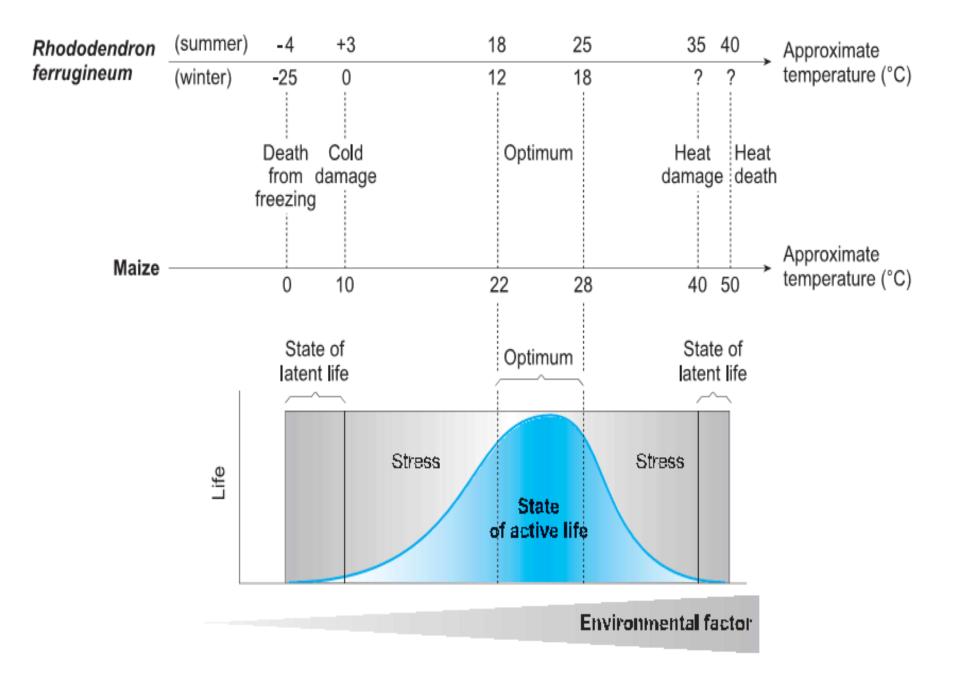
- Plant productivity is greatly influenced by environmental stresses, such as freezing, drought, salinity and flooding.
- One of the ways in which tolerance to these factors can be achieved is by the transfer of genes encoding protective proteins or enzymes from other organisms.
- Key approaches currently being examined are engineered alterations in the amounts of osmolytes and osmoprotectants, saturation levels of membrane fatty acids, and rate of scavenging of reactive oxygen intermediates.

Symptoms of deficiency

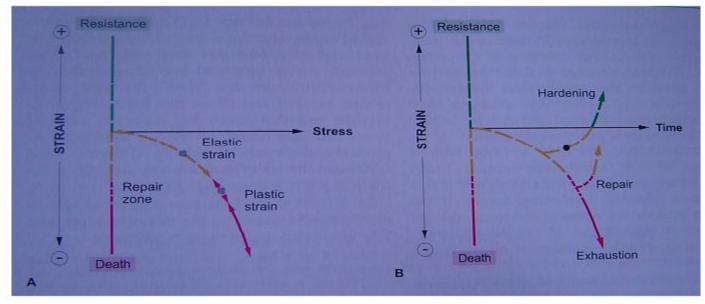
Stunted growth, small pale leaves, stiff habitus, root/shoot ratio large, lodging resistance high, premature ripening.

Limited reproductive production.

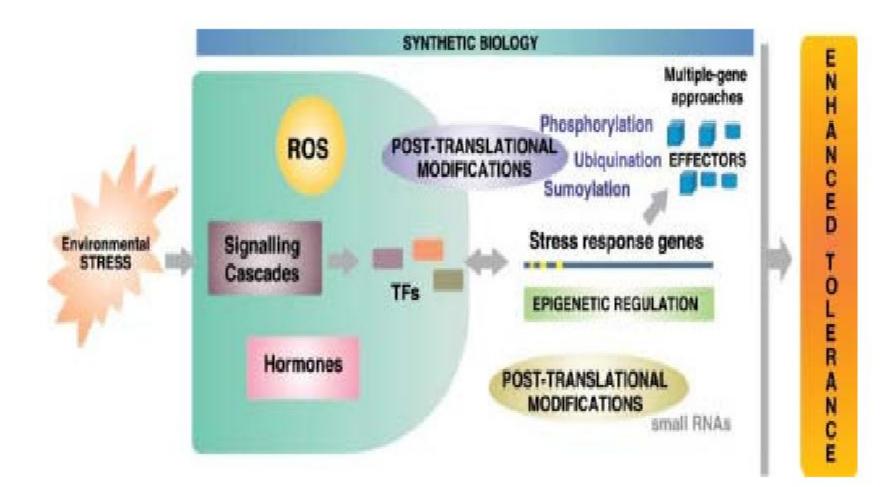

Reduced resistance to drought,


increased susceptibility to fungal infections.

Symptoms of excess fertilisation


Luxuriant, large deep green leaves, soft growth, root/shoot ratio small, lodging resistance low (often lodges), maturation delayed. Limited reproductive production. Reduced resistance to drought, increased susceptibility to fungal infections.

Winter wheat: N requirements in spring


Elastic strain, repair and plastic strain

- Elastic strain changes to plastic strain depending on intensity and duration of stress
- Plastic strain is not completely reversible
- If the strain is tolerated, hardening occurs

Perception of stress and signals

- How is stress detected? How is the signal triggering stress reaction produced?
- Degradation products of pathogen wall or host cell wall termed elicitors-trigger response.
- How abiotic stress become a signal? Little known.
- Osmotic stress(Adapt 0.1 to 5,5 M NaCl) in *Dunaliella salina* algae without form cell wall is perceived by transitional shrinkage and adopted by accumulation of Glycerol up to 60% of cell weight and avoid change in cell volume within 30 -120 min.-Censor located in plasmamembrane High sterol (40%) content of PM seems important for signal creation for salt stress
- Hardening is seen without perception of stress-short day length for winter hardening in pine or low temperature at Long day also leads to frost hardening- both factors act synergetically in nature.

Causes of loss	Payment (%)
Drought	40.8
Excess water	16.1
Cold	13.8
Hail	11.3
Wind	7.0
Insect	4.5
Disease	2.7
Flood	2.1
Other	1.5

Causes of Stress

- Inappropriate dosage (Light, Temperature, Water, Nutrients, Carbon dioxide and Oxygen)
- Environmental Noxae (UV-B, ozone, ionising radiation, xenobiotics, heavy metals and aluminium.)
- Endogenous stress

- Usually, an organism is subjected to several stress factors, e.g. lack of water and heat, or a "secondary" stress factor follows a "primary" one:
- When the plant lacks water and closes its stomata, internal CO₂ deficiency occurs when the plant is illuminated, and as a further consequence oxidative stress ensues. Combination of several stress factors is the normal case and is referred to as multiple stress.
- Upon elevated temperature, the modification of the basic metabolism could be interpreted as an unspecific reaction, whilst the production of heat shock proteins would be considered a specific stress reaction of the organism.
- There is yet another facet to the question of specificity of stress reactions which is described by the term cross-protection. Previous drought stress or salt stress (osmotic stress) is known to harden plants against temperature stress, and particularly cold stress.
- Potato plants treated with NaCl are able to tolerate lower temperatures than untreated controls. A transient increase in ABA concentration mediates this hardening reaction.

Biotic stress

Herbivory/infection

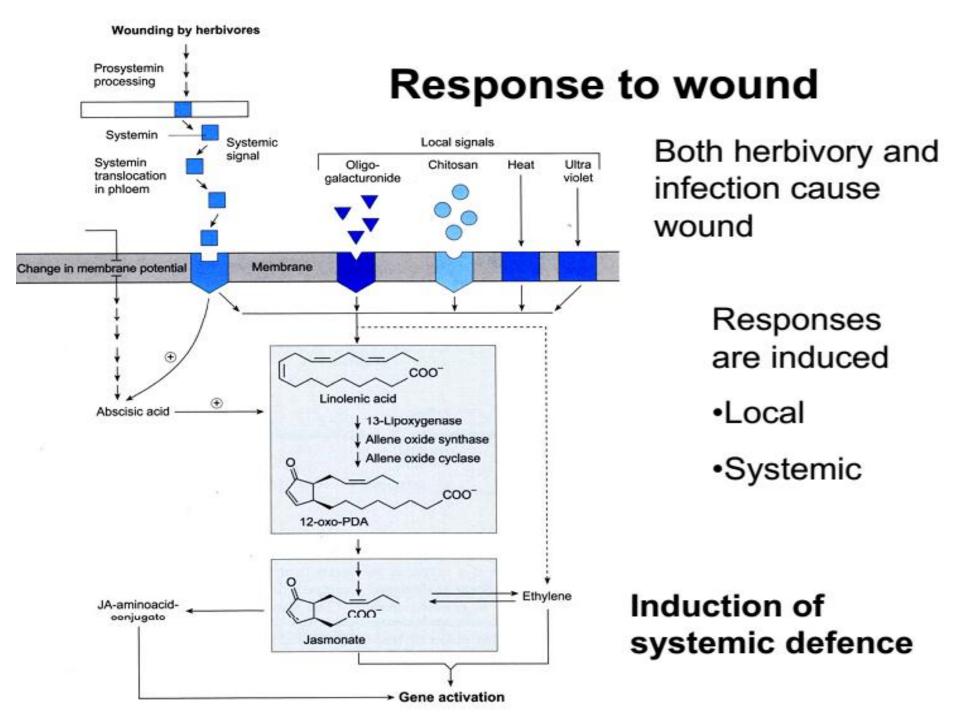
- Selective and some plants are not touched or used by special herbivors-poisonous plants
- Poisonous plants are protected by constitutively formed special chemicals- secondary metabolites accumulated in vacuoles or cell wall. Allakaloides (>6000), terpenoides (>5000), steroides (bittering agent), phenolic compounds (tanins), glycosides.
- Do not provide complete protection as some able to detoxify these compounds
 - Liver enzyme rhodonase of some animal detoxify cynogenic glycoside changing to thiocyanate
 - Butterfly Zygaena spp accumulate Cyanogenic glycoside and protect themselves by releasing HCN.
 - Chemical defence of plant and adaptation to defence- evolution
 - Mustard oil produced by cabbage is defence chemical but works signal for female butterfly *Pieris* to food and oviposition
- Induced defence response: mechanical injuries induce electric/ biochemical reaction. Long distance signal transduction path way that lead to induction of gene expression for defence. Callus in wound, inhibitor proteins -induced locally and systemically

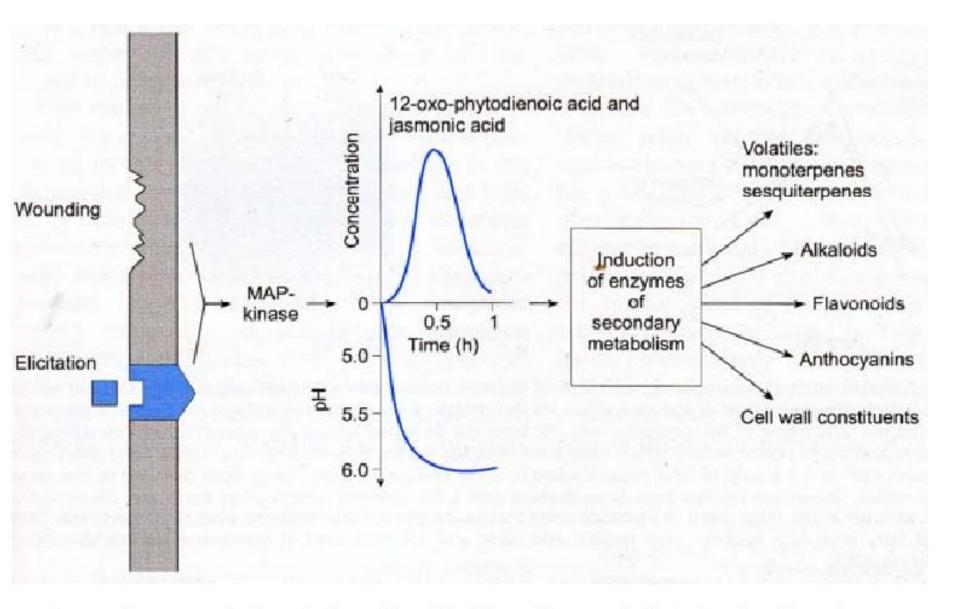
Induced defence protein

- JA as stress hormone exhibits pleiotrophic effects, Induce senescence synersistically with ABA and Et.
- Jaxmonate induced proteins (JIP): Pin, PR proteins, phytoalexins producing enzymes, dehydrins, and induce genes, also induced by ABA and Et.
- Jasmonate increase transiently but defence is permanent due to synthesis of biologically active compounds also in non-wounded cells-systemic reaction/immunization
- Promoters of *Pin 2* and *LOX1* are analysed. Element TGACG found in *LOX 1* promoter necessary for JA induction-cis element TF with bZIP element
- Plant distinguish mechanical and phytopathogenous wounds-Pin mRNA accumulate slow in mechanical.
- Specific proteins patterns induced by different insects-may be different elicitors

Table 1.10.1. Reactions which are induced by stress and/or during developmental phases in which jasmonate is involved. ABA Abscisic acid; ACC aminocyclopropanecarboxylate oxidase; Et ethylene; JA jasmonic acid; JIPs jasmonate-induced proteins; S systemin; SA salicylic acid. (After Wasternack and Parthier 1997)

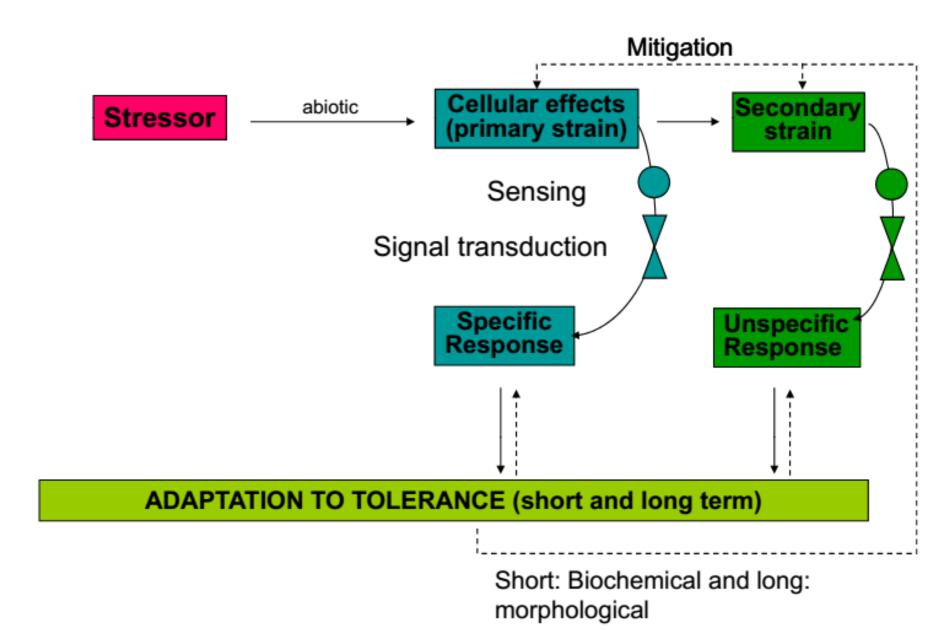
Process	Signal(s)	Protein(s)/reaction	Gene sequence known	
Wounding	S, JA, ABA, Et	Proteinase inhibitors -	Yes	
Pathogen attack	JA, SA	Thionins, "pathogenesis-related proteins"	Yes	
Elicitor (fungal) application	JA, Et	Phytoalexin-producing enzymes	Yes	
Contact	JA	Tendril movement	No	
Drought stress	ABA, JA	Dehydrins, JIPs	Yes	
Osmotic stress	ABA, JA	JIPs	Yes	
Salt stress	ABA, JA, Et	Osmotin	Yes	
Nitrogen storage	JA	N-storage proteins in vegetative tissues	Yes	
Fruit ripening	JA, Et	ACC oxidase	No	
Senescence	JA, Et	Lipoxygenase, JIPs	Yes	
Stabilisation of the cell wall	JA	Hydroxyproline- and glycine-rich proteins	Yes	

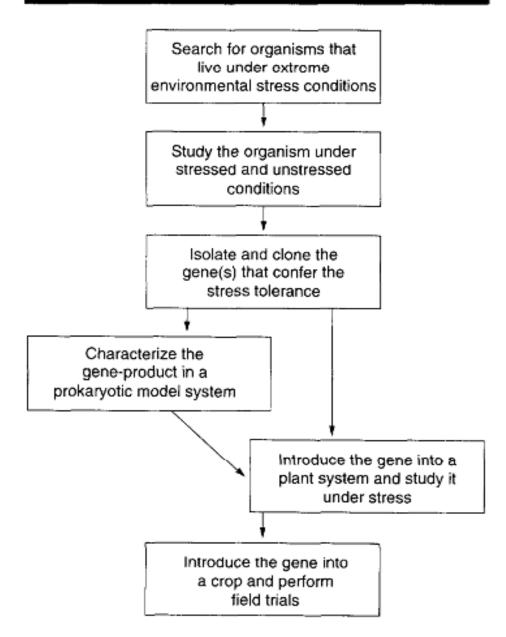

Reaction induced by stress and development


Table 1.10.2. Influence of the type of leaf damage on the pattern of enzymes involved in protection against damage (after Stout et al. 1994)

Type of damage	Protein pattern				
	Polyphenol oxidase	Peroxidase	Lipoxygenase	Protease-inhibitor	
Caterpillar feeding	+	2	+	+ ^a	
Feeding by leaf miners		+ ^b		-	
Tapping by mites	-	+	+	-	
Submerged in soap solution	-	+	+	-	
Mechanical damage	+	- The state	State	. +	

^a Statistically significant in two of three replicates.
^b Significant effect in one of three replicates.


Type of leaf damage and enzymes pattern



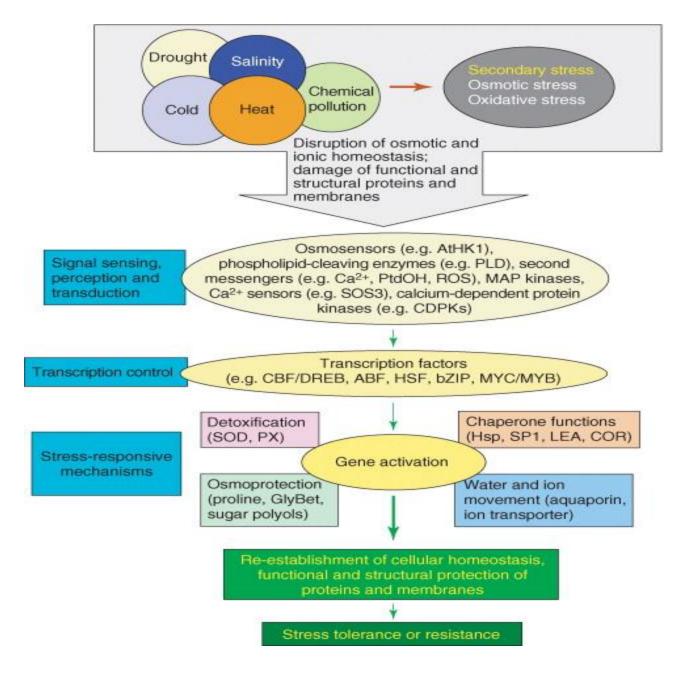
Secondary metabolites induced by JA. Wounding and elicitation leads to increase in external pH and transient rise in 12OPDA and JA, that induce gene expression encoding enzymes for sec. metabolite synthesis

General stress concept

Box 1. Strategy for creating a more stress-tolerant plant using genetic engineering[®]

Abiotic stress tolerance in plants

Several abiotic stresses (heat, chilling, freezing, drought, salinity) lead to water deficit conditions


Yield of Field grown crops due to sub optimal abiotic factors in USA is only 22% of the genetic potential (Boyer, 1982)

Plants are devised with means to cope up with various stresses (avoidance/tolerance), but ability of plants to respond to stresses varies with species, environment (eg. optimal temp for growth of pea and soybean is 20 and 30 °C, resp: as temp increases pea shows signs of heat stress much sooner than soybean)

Stress avoidance mechanisms like restriction of growth to periods of high water availability (as in ephemerals), storage of water (CAM plants) or prevention of excessive water loss as in grasses, CAM plants.

Intrinsic tolerance developed by specific stress reactions like water storage, synthesis of osmolytes, biochemical and mechanical means.

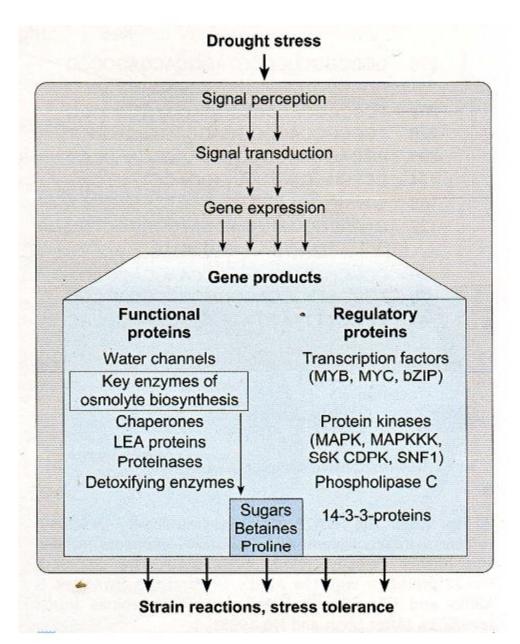
Conventional breeding to accomplish improving abiotic stress tolerance due to quantitative nature of stress tolerance genes and breeding with more distant (more tolerant) relatives runs the risk of introducing undesired traits

Complexity of plant response to Abiotic stress

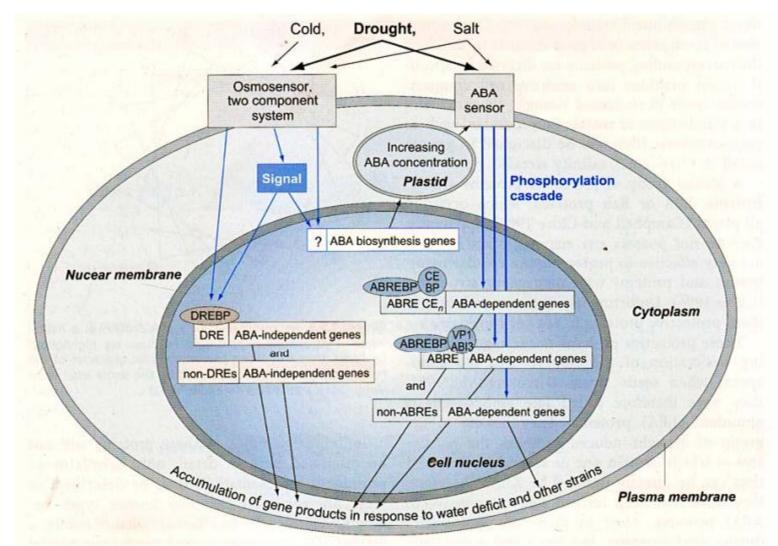
Drought tolerance

- All plant show certain level of tolerance to drought
- Water deficit also by salt stress and frost. In Seed development upto 90%water loss necessary so drought is regular component of plant development
- Constitutive tolerance in plant adapted to continuous drying (xerophytes)
- Mesophytes are generally non-drought tolerance
- Drought stress when their RWC is decreased to 50%.
- 50% water loss for long period is detrimental in mesophytes
- Resurrection plant (*like Craterostigma plantaginea*) survive also when lose 90%. Show constitutive tolerance to drought stress. A gene regulated character

Changes in water loss

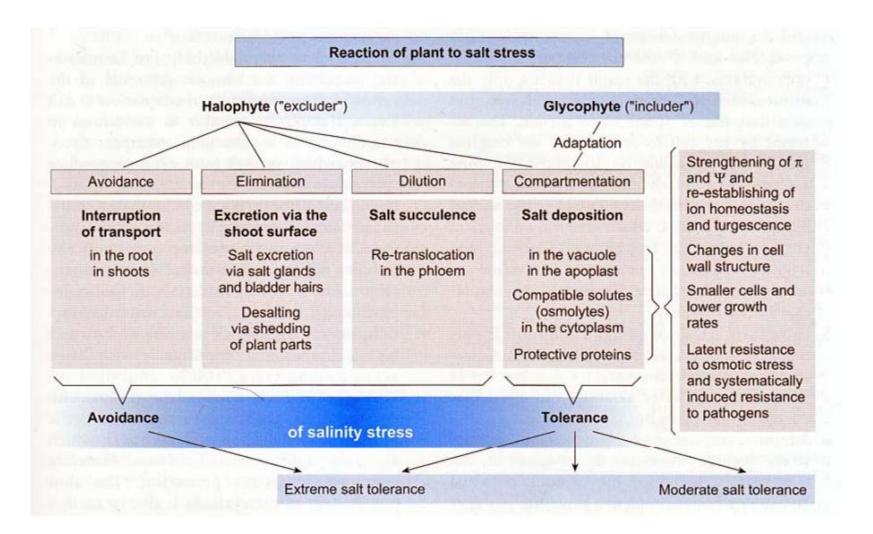

- Plasmoysis: Shrinkage of protoplast
- Cellular solution concentrate
- Decrease or loss of turgid condition
- Changes in water potential gradient across membrane
- Disintegration of biomembrane and denaturation of protein in the worst condition
- Prolonged drought stress may cause death of cell.

Perception of dehydration stress


- Which of the above changes work as signal- probably change in water potential
- Osmosensers: known in *E.coli* and yeast. Yeast in dehydration the membrane peptide Sho1P activates Mitogen activated protein (MAP) kinase cascade leading to accumulation of osmoprotectant glycerol. Similar systems are reported in Arabidopsis.
- ABA mediated response: increase in drought, mutant lacking ABA are not viable as they wilt even in slightest drought stress.

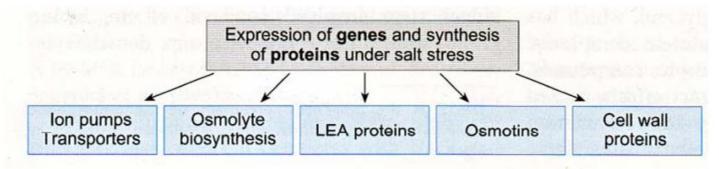
Mechanism of drought tolerance

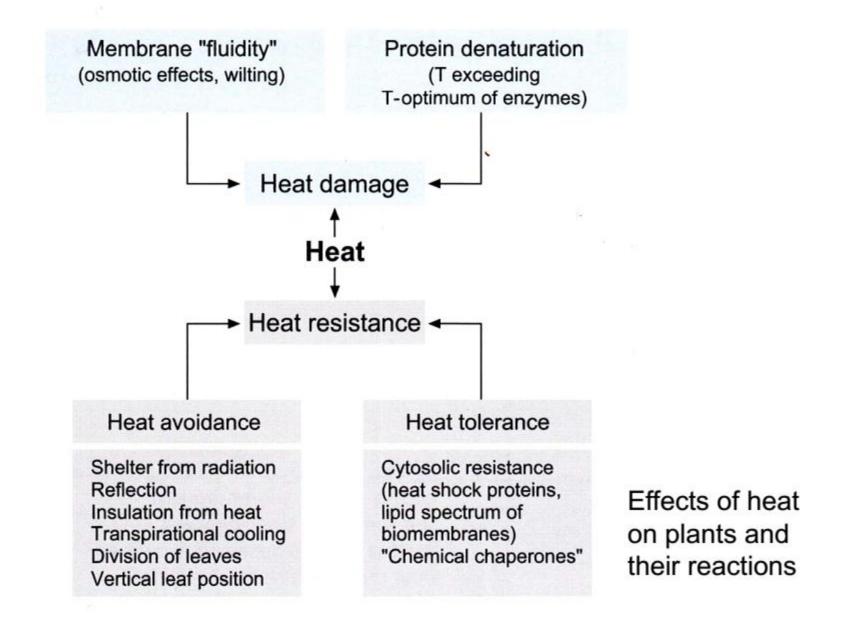
- All plants show certain tolerance to drought
- Drought tolerant plants show accumulation of ABA, sugar and osmolytes, and dehydration related proteins
- Protein synthesis is inhibited in drought but dehydration related proteins like dehydrin synthesis is promoted
- These compounds are important for stress tolerance
- Drought tolerant plant show rapid reaction and accumulate these compounds rapidly
- Drought is also a natural process- seed dry naturally in such seeds dehydrins are accumulated
- Same dehydrins are synthesised in other parts during drying



Response of plant cell to desiccation

Multiple pathways leading to induction of gene expression upon desiccation stress


mn-sod Mn-	Dismutation of	M. sativa	Transformants showed reduced injury from water
Superoxide	reactiveoxygen		deficit stress and increased winter survival
dismutase	inter mediates in		
	mitochondria		
DREB1A (CBF3)	Transcription factor	Arabidopsis	Increased salt, drought and cold tolerance in
DRE-binding			nonacclimated plants
protein			
DREB1A (rd29A)	Stress-inducible	N. tabacum	Improved drought and low-temperature stress
DRE-binding	promoter		tolerance
protein			
OsMYB3R-2 DNA-	Transcription factor	Arabidopsis	Overexpression of OsMYB3R-2 leads to increased
binding domain			tolerance to freezing, drought, and salt stress



Plant reactions to salt stress

Adaptation

- Ion homisotasis: by salt elimination/avoidance
- Osmotic adjustment: producing osmolytes
- Induction of protective proteins: LEA proteins, osmotins

Plant Adaptation to Heat stress

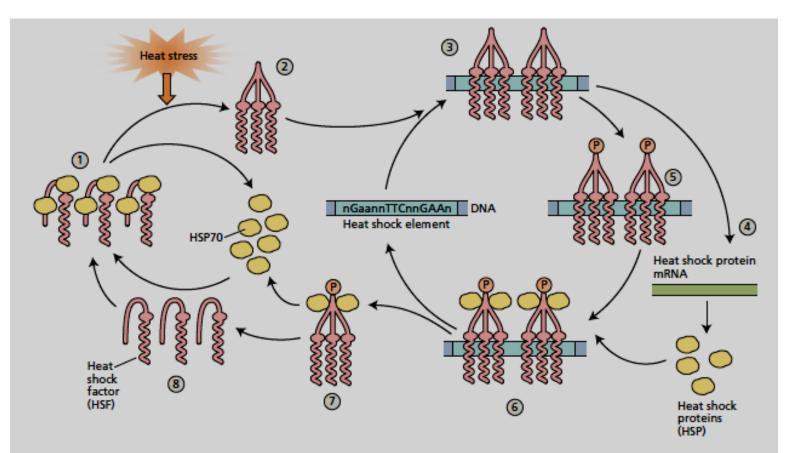


FIGURE 25.11 The heat shock factor (HSF) cycle activates the synthesis of heat shock protein mRNAs. In nonstressed cells, HSF normally exists in a monomeric state (1) associated with HSP70 proteins. Upon the onset of an episode of heat stress, HSP70 dissociates from HSF which subsequently trimerizes (2). Active trimers bind to heat shock elements (HSE) in the promoter of heat shock protein (HSP) genes (3), and activate the transcription of HSP mRNAs leading to the translation of HSPs among which are HSP70 (4). The HSF trimers associated with the HSE are phosphorylated (5) facilitating the binding of HSP70 to the phosphorylated trimers (6). The HSP70 trimer complex (7) dissociates from the HSE and disassembles and dephosphorylates into HSF monomers (8), which subsequently bind HSP reforming the resting HSP70/HSF complex. (After Bray et al. 2000.)

Plant Adaptation to water/osmotic stress

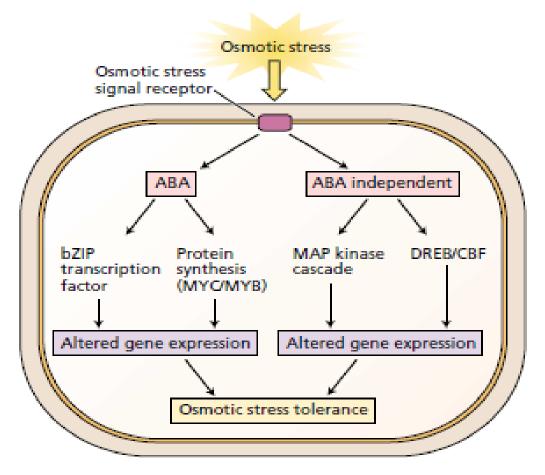
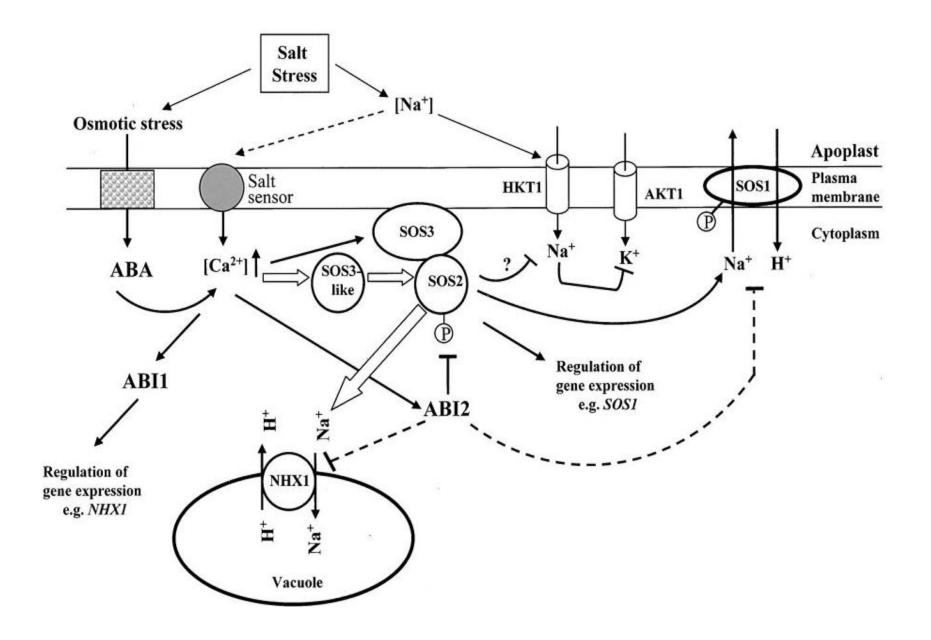



FIGURE 25.9 Signal transduction pathways for osmotic stress in plant cells. Osmotic stress is perceived by an as yet unknown receptor in the plasma membrane activating ABA-independent and an ABA-dependent signal transduction pathways. Protein synthesis participates in one of the ABA-dependent pathways involving MYC/MYB. The

Gene and source	Transgenic plants	Stress tolerant traits				
	Mannitol					
E. coli mt1D (mannitol-1-phosphate	tobacco	fresh weight, plant height and flowering under				
dehydrogenase)		salinity stress				
E. coli mtID	Arabidopsis	germination at 400 mM NaCl				
E. coli mt1D	tobacco	salt-stress tolerance; mannitol contributed only to 30-40% of the osmotic adjustment				
E. coli mt1D	wheat (Triticum aestivum L.)	only 8% biomass reduction when compared to 56% reduction in control plants in 150 mM NaCl stress				
	D-0	Dnonitol				
<i>IMT1</i> (myo-inositol <i>O</i> -methyl trans- ferase) of common ice plant	tobacco	drought and salinity stress				
	Sec	orbitol				
Stpd1 (sorbitol-6-phosphate dehy- drogenase) of apple, driven by CaMV 35S promoter	Japanese persimmon	tolerance in Fv/Fm ratio under NaCl stress				
	Glyci	ne betaine				
Arthrobacter globiformis CodA (choline oxidase)	Arabidopsis	germination at 300 mM NaCl; seedling growth at 200 mM NaCl; retention of PSII activity at 400 mM NaCl				
A. globiformis CodA targeted to the chloroplasts or cytosol	rice	faster recovery after 150 mM NaCl stress				
A. globiformis CodA	Brassica juncea (L.) Czernj.	germination in 100–150 mM NaCl; seedling growth in 200 mM NaCl				
E. coli choline dehydrogenase (betA) and betaine aldehyde dehydroge- nase (betB) genes	tobacco	biomass production of greenhouse grown plants under salt stress; faster recovery from photo inhibition under high light, salt stress and cold stresses				
Atriplex hortensis betaine aldehyde dehydrogenase (BADH) gene under maize ubiquitin promoter	wheat (Triticum aestivum L.)	seedling growth in 0.7% (=120 mM) NaCl				
Barley peroxisomal BADH gene	rice	stability in chlorophyll fluorescence under 100 mM NaCl stress; accumulates less Na ⁺ and Cl ⁻ ions but maintained K ⁺ uptake				

Table 2. Salt-stress tolerance of transgenic plants over-producing compatible osmolytes.

Vigna aconitifolia L. P5CS (Δ^1]pyrroline-5-carboxylate synthetase) gene Vigna aconitifolia L. P5CS gene under barley HVA22 promoter Mutated gene of Vigna aconitifolia L. P5CS which encode P5CS enzyme that lacks end product (proline) inhibition Antisense proline dehydrogenase gene E. coli otsA (Trehalose-6-phosphate synthase) and otsB (Trehalose-6-phosphate phosphatase) bi-functional fusion gene (TPSP) under

the control of ABA responsive promoter or Rubisco small subunit (*rbcS*) promoter

E. coli TPSP under maize ubiquitin rice promoter

tobacco rice L. tobacco me *Arabidopsis* Proline

root growth; flower development

faster recovery after a short period of salt stress

improved seedlings tolerance and low free radical levels at 200 mM NaCl

tolerant to high salinity (600 mM NaCl); constitutive freezing tolerance (-7°C)

Trehalose

root and shoot growth at 4 wk of 100 mM NaCl stress; survival under prolonged salt stress; maintenance of high K⁺/Na⁺ ratio; Low Na⁺ accumulation in the shoot; maintained high PSII activity and soluble sugar levels

better seedling growth and PSII yield under salt, drought and cold stresses

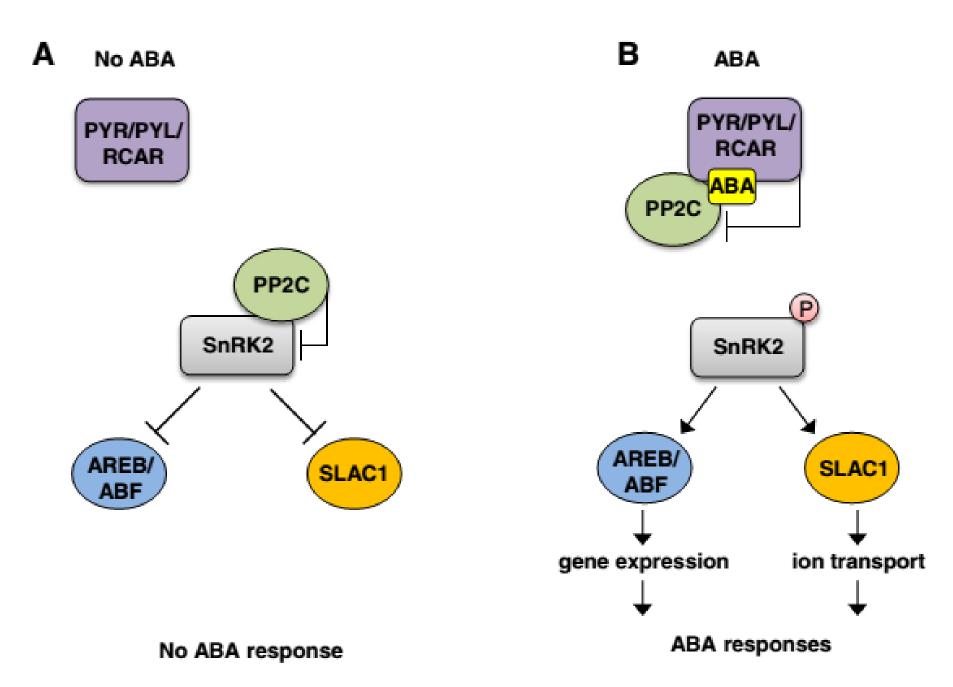
Strategies for engineering stress tolerance in plants

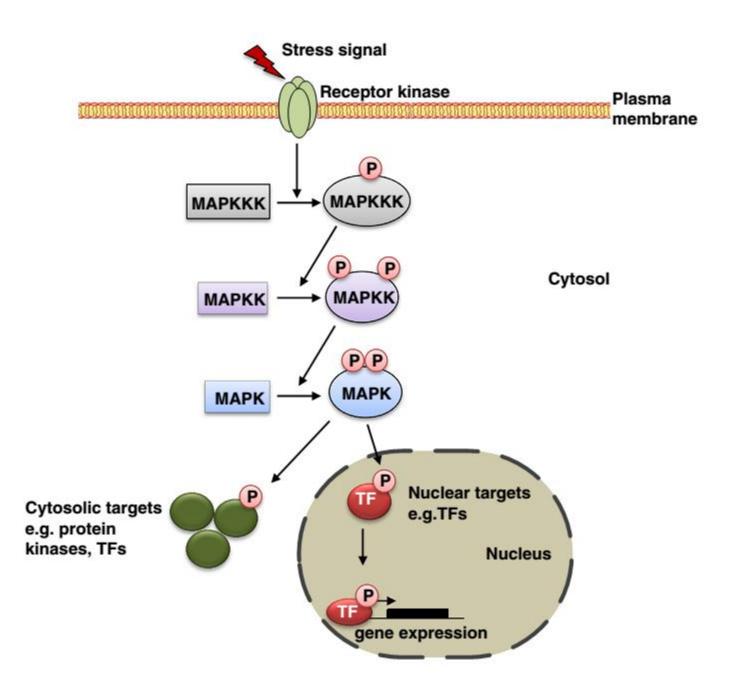
Synthesis of protective proteins

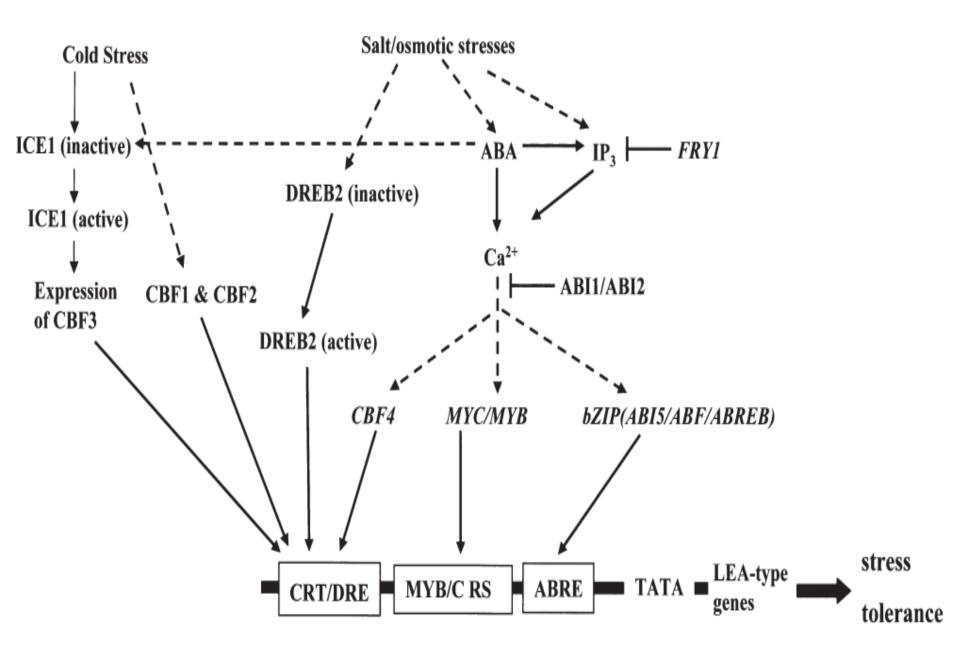
Protective proteins	l i i i i i i i i i i i i i i i i i i i						
LEA	HVA1	Rice	Barley	Rice Act-1P	Water withholding	Plant growth	1996
LEA	HVA1	Wheat	Barley	Maize Ubi-1P	Limiting water supply	Plant growth, biomass	2000
Chaperone	BIP	Tobacco	Soybean	CaMV358P	Water withholding		2001
						pholosynthesis	
Heat shock protein	AyHsp17.6A	Arabiolopais	Arabidopsis	CeMV358P	Water withholding	Survivability, FW	2001
LEA	HVA1	Rice	Barley	Rice Act-1P	Water withholding	Shoot growth, RWC,	2004
						water potential	
LEA	LEA	Chinese cabbage	Canola	CuMV958P	Water withholding	Shoot growth,	2005
						survivability	

ROS scavenging

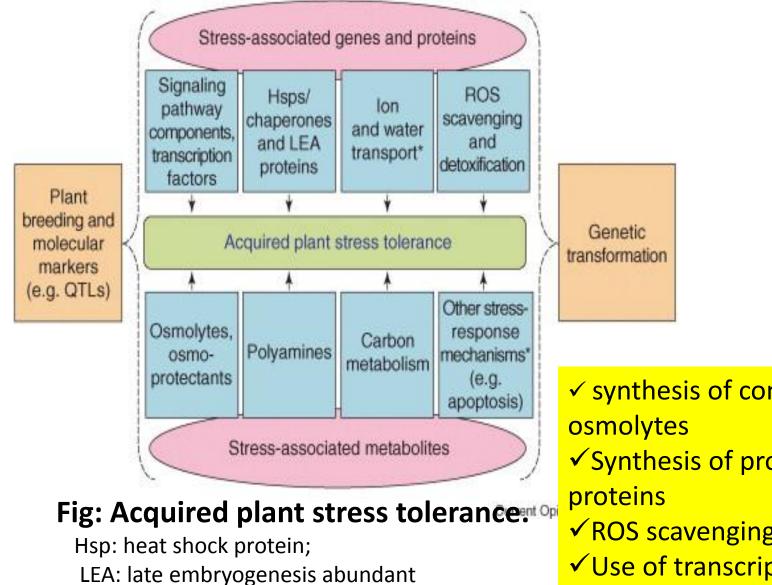
ROS-scavenging proteins							
Detoxification	Misco	Alfalfa	H. plumbaginifolia	CaMV358P	Water withholding, field trial	Photosynthesis, electrolyte leakage, yield	1996
Lipid peroxide	MsALR	Tobaceo	Alfalfa	CaMV35S/P	Water withholding	Photosynthesis	2000
NAD* breakdown	РАЯР	Canola	-	CaMV355P (RNA)	Water withholding	FW, shoot growth	2005


Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor


Classification*	Gene name ^b	Transgenic	Origin	Expression®	Experiment	Parameters ⁴	Year
AP2/ERF family	,						
OREB1/CBF	DREB1A/C8F3	Arabidopsis	Arabidopsis	CaMC358P	Water withholding	Survivability	1998
DREB1/CBF	DREB1A/CBF3	Arabidopsis	Arabidopsis	Arabidopsis RD29AP	Water withholding	Survivability	1999
DREB1/CBF	DREB1B/CBF1	Tomato	Arabidopsis	CaM/35SP	Water withholding	Plant growth	2002
DREB1/CBF	C8F4	Arabidopsis	Arabidopsis	CaM/35SP	Water withholding	Survivability	2002
DREB1/CBF	ZmDREB1A	Arabidopsis	Maize	CaMV35SP	Desiccation	Electrolyte leakage	2004
DREB1/CBF	DREB1C/CBF2	Arabidopsis	Arabidopsis	Knock out	Desiccation	FW	2004
AP2/ERF	SHN1/WIN1	Arabidopsis	Arabidopsis	CaM/35SP	Water withholding	Survivability	2004
DREB1/CBF	DREB1A/CBF3	Wheat	Arabidopsis	Arabidopsis RD29AP	Water withholding	Plant growth	2004
DREB1/CBF	DREB1A/CBF3	Tobacco	Arabidopsis	Arabidopeis RD29AP	Water withholding	Survivability	2004
DREB1/CBF	DREB1A/CBF3	Rice	Arabidopsis	Maize UbF 1P	Water withholding	Photosynthesis, survivability	2005
AP2/ERF	WXP1	Alfalfa	M. truncatule	CaMV35SP	Water withholding	Survivability	2005
DREB2	DREB2A (active form with internal deletion)	Avabidopsis	Arabidopsis	CaMV35SP, Arabidopsis RD29AP	Water withholding	Survivability	2005


Strategies for engineering stress tolerance in plants

Use of Signalling factors


Gene name*	There are a second as					
CHORING THOUTHO	Transgenic	Origin	Expression*	Experiments	Parameters"	Year
OsCDPK7	Rice	Rice	CaMI/35SP	Water withholding	Shoot growth, F./F., witting, gene expression	2000
AtGSK1 NPK1	Arabidopski Malze		CaMV35SP CaMV35SP	Water withholding Limiting water supply	Survivability Leaf number, kernel yield	2001 2004
SRK2C	Arab/dops/s	Arabidopsis	CaMV355P	Water withholding	Survivability, gene expression	2004
CBL1	Arab/dopsis	•	Agrobacterium MAS	Water withholding	Survivability, gene expression	2003
GF14X	Cotton	Cotton	CaMV35SP	Limiting water supply	Senescence, Chi content, photosynthesis	2004
ADR1	Arab/dopais	Arabidopsis	CaMV35SP	Water withholding	Survivability, gene expression	2004
ERA1	Arabidopsis, canola		CaMV35SP/ RD29AP (antisense)	Water withholding, field test	Survivability, water loss, seed yield, oil content	2005
	OsCDPK7 AtGSK1 NPK1 SRK2C CBL1 GF14A ADR1	OsCDPK7 Rice AtGSK1 Arati/dopski NPK1 Maize SRK2C Arabi/dopski GF14A Cotton ADR1 Arabi/dopski ERA1 Arabi/dopski	OsCDPK7 Rice Rice AtGSK1 Arabidopsis Arabidopsis NPK1 Maize Tobacco SRK2C Arabidopsis Arabidopsis CBL1 Arabidopsis Arabidopsis GF14A Cotton Cotton ADR1 Arabidopsis Arabidopsis	OsCOPK7 Rice Rice CaMV35SP AtGSK1 Arabiclopsis Arabiclopsis CaMV35SP NPK1 Maize Tobacco CaMV35SP SRK2C Arabiclopsis Arabiclopsis CaMV35SP CBL1 Arabiclopsis Arabiclopsis CaMV35SP CBL1 Arabiclopsis Arabiclopsis Agrobacterium MAS GF14A Cotton Cotton CaMV35SP ADR1 Arabiclopsis Arabiclopsis CaMV35SP ERA1 Arabiclopsis Arabiclopsis CaMV35SP ERA1 Arabiclopsis Arabiclopsis CaMV35SP/ RD20AP	OsCDPK7 Rice Rice CaMV35SP Water withholding At3SK1 Arabidopsis Arabidopsis CaMV35SP Water withholding NPK1 Maize Tobacco CaMV35SP Water withholding Limiting water supply SPK2C Arabidopsis Arabidopsis CaMV35SP Water withholding CBL1 Arabidopsis Arabidopsis Agrobacterium Water withholding GF14A Cotton Cotton CaMV35SP Limiting water supply ADR1 Arabidopsis Arabidopsis CaMV35SP Water withholding ERA1 Arabidopsis, Arabidopsis CaMV35SP Water withholding Field test	OsCOPK7 Rice Rice CaMV35SP Water withholding Shoot growth, F,/F,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Strategy for abiotic stress resistance in crop plant

ROS: reactive oxygen species

✓ synthesis of compatible ✓ Synthesis of protective ✓ ROS scavenging ✓ Use of transcription factors ✓ Use of signaling factors

Class of target	Examples	Possible mode(s) of action
Osmoprotectants	Amino acids (proline, ectoine) Dimethyl sulfonium compounds (glycine betaine, DMSP) Polyols (mannitol, D-ononitol, sorbitol) Sugars (sucrose, trehalose, fructan)	Osmotic adjustment; protein/membrane protection; reactive (OH·) scavenging
Reactive oxygen scavengers	Enzymatic (catalase, Fe/Mn superoxide dismutase, ascorbate peroxidase; glutathione cycle enzymes: glutathione S-transferase, glutathione peroxidase; gamma-glutamylcysteine synthetase, alternative oxidase) Non-enzymatic (ascorbate, flavones, carotenoids, anthocyanins)	Detoxification of reactive oxygen species
Stress proteins	Late embyogenesis abundant proteins	Unknown, protein stabilization, water binding/ slow desiccation rates; chaperones; protein/ membrane stabilization; ion sequestration
Heat shock proteins	Various heat-, cold-, salt-shock proteins in several subcellular compartments	Reversal/prevention of protein unfolding; translational modulation
lon/proton transporters	High-affinity K ⁺ transporter; low-affinity K ⁺ channels; plasma membrane, pre-vacuolar, vacuolar and organellar proton ATPases and ion transporters (H ⁺ /ATPase; Na ⁺ /H ⁺ antiporters)	K+/Na+ uptake and transport; establishment of proton gradients; removal and sequestration of (toxic) ions from the cytoplasm and organelles

The complexity of stress adaptation: major targets for engineered stress tolerance.

Fatty acid desaturases

Water status

Aquaporins or water channels (solute facilitators: urea, glycerol, CO₂, possibly others and including ions); CO₂ concentration

Increased amounts of dienoic and fluidity; chilling tolerance

Regulation of AQP amount differentially in tonoplast and plasma membrane; regulation of membrane location; stomatal behavior

Ca²⁺-sensors/phosphorylation mediated signal transduction

Upregulation/activation of transcription

Changes in hormone homeostasis

Signaling components

Homologs of histidine kinases (AtRR1/2); MAP kinases (PsMAPK, HOG); Ca²⁺-dependent protein kinases; SNF1/kinases; protein phosphatases (ABI1/2); CNA/B signaling systems; Ca²⁺ sensors (SOS3); inositol kinases

Control of transcription Transcription factors: EREBP/AP2 (DREB, CBF); zinc finger TF (Alfin 1); Myb (AtMyb2, CpMyb10)

Growth regulators

Altered biosynthetic pathways or conjugate levels for abscisic acid, cytokinins and/or brassinosteroids

Table 1. Foreign genes expressed in transgenic plants

Gene	Origin	Host	Stress	Refs
BetA	E. coli	Tobacco	Salinity	16
BetA	E. coli	Potato	Freezing	G. Lilius et al., unpublished
codA	Arthrobacter globiformis	Arabidopsis	Salinity and drought	17
p5cs	Vigna aconitifolia	Tobacco	Drought	18
Mltd	E. coli	Arabidopsis	Salinity	19
Mltd	E. coli	Tobacco	Salinity	20
TPS1	Saccharomyces cerevisiae	Tobacco	Drought	21
SacB	Bacillus subtilis	Tobacco	Drought	22
fad7	Arabidopsis	Tobacco	Chilling	23
Des9	Anacystis nidulans	Tobacco	Chilling	24
HVA I	Barley	Rice	Salinity and drought	6
Afp	Winter flounder	Tobacco	Freezing	26
afa3	Winter flounder	Tomato	Freezing	18
Mn-Sod	Nicotiana plumbaginifolia	Alfalfa	Drought and freezing	15
Mn-Sod	N. plumbaginifolia	Tobacco	Oxidative	30
Fe-Sod	Arabidopsis	Tobacco	Oxidative	31
Gr/Cu,Zn-Sod	E.coli/Rice	Tobacco	Oxidative	33
vhb	Vitreoscilla stercoraria	Tobacco	Hypoxia and anoxia	35