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Abiotic environmental stresses such as drought, salinity and low temperature are major limitations for plant growth
and crop productivity. Certain plants, marine algae and bacteria have evolved a number of adaptations to such
abiotic stresses: some of these adaptations are metabolic and others structural. Accumulation of certain organic
solutes (known as osmoprotectants) is a common metabolic adaptation found in diverse taxa. These solutes protect
proteins and membranes against damage by high concentrations of inorganic ions. Some osmoprotectants also
protect the metabolic machinery against oxidative damage. Many major crops lack the ability to synthesize the special
osmoprotectants that are naturally accumulated by stress-tolerant organisms. Therefore, it was hypothesized that
installing osmoprotectant synthesis pathways is a potential route to breed stress-tolerant crops. Proving this, recent
engineering e�orts in model species led to modest but signi®cant improvements in stress tolerance of transgenic
plants. Synthetic pathways to two kinds of osmoprotectantsÐpolyols and quaternary ammonium compoundsÐare
discussed here. Results from the metabolic engineering experiments emphasize the need for a greater understanding of
primary metabolic pathways from which osmoprotectant synthesis pathways branch. Future research avenues include
the identi®cation and exploitation of diverse osmoprotectants in naturally stress-tolerant organisms, and the use of
multiple genes and reiterative engineering to increase osmoprotectant ¯ux in response to stress. High-throughput
genomic technologies o�er a number of tools to re®ne this by rapidly identifying genes, pathways, and regulatory
controls. # 2000 Annals of Botany Company
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INTRODUCTION

Abiotic stress factors such as drought, salinity and extremes
of temperature have long been known as major limitations
to crop productivity (Boyer, 1982). Organisms that
currently live in habitats where these factors predominate
have evolved various adaptations to these stresses. One
approach to improve stress tolerance in crops would be to
transfer the genes for these adaptive traits from the tolerant
organism to the crop. However, this process has not been
successful using conventional means (see Yeo and Flowers,
1989), partly because the traits are poorly described
genetically and partly because of the transfer of unwanted
genes during conventional crossing. Genetic transformation
technology enables us to achieve gene transfer in a precise
and, to some extent, predictable manner. Metabolic traits,
especially pathways with few enzymes, are better charac-
terized genetically and more amenable to such manipula-
tions than structural and developmental traits. This
Botanical Brie®ng reviews the potential for the metabolic
engineering of pathways that result in the synthesis of
tants in plants.
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OSMOPROTECTANTS

Certain plants, marine algae, bacteria and other organisms
accumulate organic solutes such as sugar alcohols, the
amino acid proline, quaternary ammonium and or tertiary
sulphonium compounds in response to osmotic stress
(Yancey et al., 1982). These compounds are termed
compatible solutes (Johnson et al., 1968) because even in
high concentrations they do not inhibit the activity of
enzymes. They also protect enzymes and membranes against
deleterious e�ects of destabilizing ions such as Na� and Clÿ
(Yancey et al., 1982). Accumulation of compatible solutes in
response to stress is a metabolic adaptation found in a
number of stress-tolerant, often unrelated taxa, suggesting
convergent evolution for this trait (Wyn Jones and Storey,
1981; Yancey et al., 1982; Rhodes and Hanson, 1993).
Although many osmoprotectant compounds confer stress
protection in bacteria, marine algae, animal cells and plants,
their synthetic pathways often di�er in terms of enzymes and
steps. Structures of representative osmoprotectants accum-
ulated by stress-tolerant plants are shown in Fig. 1. The
osmoprotectant is synthesized in response to the stress and is
localized in the cytoplasm; inorganic ions such as Na� and
Clÿ are preferentially sequestered into the vacuole (Flowers
et al., 1977, 1986; Bohnert et al., 1995; Glenn et al., 1999).
Thus, this leads to turgor maintenance for the cell under

osmotic stress.
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obtained so far.

osmoprotectant engineering.
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FIG. 1. Structures of representative osmoprotectants accumulated by
stress-tolerant plants.
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METABOLIC ENGINEERING

Metabolic engineering is the directed improvement of
cellular properties through the modi®cation of speci®c
biochemical reactions or the introduction of new ones, with
the use of recombinant DNA technology (Stephanopoulos,
1999). Some of the metabolic adaptations to stress have
been manipulated in model plant species using metabolic
engineering. Table 1 lists examples where the expression of
a transgene resulted in changes in the synthesis of an
osmoprotectant and claims for a stress-tolerant phenotype.
However, only a few of these studies looked thoroughly at
the consequences of these manipulations on the phenotype.
Nevertheless, further increases in levels of stress tolerance in

both model and crop species can be expected in the future

TABLE 1. Stress-tolerant plants obtaine

Abiotic stress factors Engineered sp

Chilling Nicotiana taba
Salinity Nicotiana taba
Cold Nicotiana taba
Salinity Nicotiana taba
Drought Nicotiana taba
Drought and salinity Oryza sativa
Salinity Nicotiana taba
Oxidative stress Nicotiana taba
Salinity and cold Arabidopsis th
Salinity and drought Nicotiana taba
Chilling and salinity Nicotiana taba
Freezing Arabidopsis th
Salinity and cold Oryza sativa
High temperature Arabidopsis th
Drought, salt and freezing Arabidopsis th
Heavy metal stress Brassica junce
Salinity Arabidopsis th
Salinity Medicago sativ
Salinity, drought, low temperature B. napus, A. th
following reiterative manipulations of multiple transgenes,
guided by a thorough analysis of the transgenic plants

eering Stress Tolerance
INSTALLING OSMOPROTECTANT
SYNTHESIS PATHWAYS

Work relating to two osmoprotectant classesÐthe polyols
and the quaternary ammonium compoundsÐis reviewed
here. Some generalizations can be made: ®rstly, the availa-
bility of the precursor to synthesize the osmoprotectant
could limit the amount of osmoprotectant made in a
transgenic host. Secondly, negative physiological con-
sequences of diverting the precursor to the osmoprotectant
away from primary metabolism should be considered.
Thirdly, despite the availability of physiological data and
techniques for assessing stress tolerance in plants, trans-
genic plants have only rarely been subjected to rigorous
assessments of their stress-tolerant phenotype following
POLYOL BIOSYNTHESIS

Polyols such as glycerol, mannitol, sorbitol and sucrose are
osmoprotectants in algae, certain halophytic plants and
insects exposed to freezing (Yancey et al., 1982). Figure 2
illustrates polyol synthesis. Myo-inositol derived from
glucose-6-phosphate serves as a precursor to a number of
metabolites, pools of which turn over slowly in the cell and
which are related to membrane biogenesis, cell signalling
and stress protection (Loewus and Murthy, 1999). Manni-
tol is synthesized by the action of NADPH-dependent
mannitol 1-phosphate dehydrogenase from fructose 6-
phosphate (Fig. 2). When expressed in transgenic tobacco
and Arabidopsis, a gene encoding mannitol 1-phosphate
dehydrogenase (mtlD) from Escherichia coli resulted in
mannitol production and a salinity-tolerant phenotype

(Tarczynski et al., 1993; Thomas et al., 1995). Further

d following expression of a transgene

ecies Reference

cum Murata et al., 1992
cum Tarczynski et al., 1993
cum Kodama et al., 1994
cum Kishor et al., 1995
cum Pilon-Smits et al., 1995

Xu et al., 1996
cum Lilius et al., 1996
cum Shen et al., 1997a
aliana Hayashi et al., 1997
cum Sheveleva et al., 1997
cum Roxas et al., 1997
aliana Jaglo-Ottosen et al., 1998

Sakamoto et al., 1998
aliana Alia et al., 1998b
aliana Kasuga et al., 1999
a Zhu et al., 1999
aliana Apse et al., 1999
a Winicov and Bastola, 1999
aliana, N. tabacum Huang et al., 2000



ance (Sheveleva et al., 1997).
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FIG. 2. myo-Inositol and polyol biosynthesis. Solid arrows indicate enzyme-catalysed steps. Enzymes discussed in the text are numbered (1) to (6).
(1) myo-inositol-1-phosphate synthase; (2) myo-inositol-1-phosphate phosphatase; (3) myo-inositol O-methyltransferase; (4) D-ononitol
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work suggested that mannitol only contributed to 30±40%
of the change in osmotic potential in transgenic plants
(Karakas et al., 1997). Rather, the stress-tolerant phenotype
is due to protection by mannitol against oxidation by
hydroxyl radicals (Shen et al., 1997a, b). A recent
investigation in yeast concluded that polyols may have a
dual function in stress protection, both by facilitating
osmotic adjustment and by supporting redox control (Shen
et al., 1999). By over-expressing apple cDNA for sorbitol 6-
phosphate dehydrogenase, sorbitol-accumulating trans-
genic tobacco plants have been obtained (Sheveleva et al.,
1998). Those transgenic plants accumulating high levels of
sorbitol (415 mmol gÿ1 f. wt) exhibited growth defects and
necrotic lesions, presumably due to depletion of the myo-
inositol pool (Sheveleva et al., 1998).

Certain stress-tolerant plants accumulate specialized
polyols (cyclitols) which may provide better stress protec-
tion than that provided by mannitol or sorbitol accumula-
tion. The genes for the synthesis of these cyclitols and their
regulation are therefore interesting for engineering crops for
stress tolerance. An elegant series of studies on myo-inositol
metabolism in a halophyte, common iceplant (Mesem-
bryanthemum crystallinum), showed that myo-inositol is
converted to the osmoprotectants D-ononitol and D-pinitol
(Fig. 2) by a two-step pathway and this pathway is regulated
by stress (Vernon and Bohnert, 1992; Adams et al., 1992;
Rammesmayer et al., 1995; Nelson et al., 1998). The
committing step to myo-inositol production, catalysed by
myo-inositol 1-phosphate synthase, is induced by salinity
(Ishitani et al., 1996). This enzyme is expressed in leaves of
the iceplant but repressed in its roots (Nelson et al., 1998).
Therefore, metabolic engineering of a glycophyte for the
production of cyclitols could best be achieved by tissue-
speci®c stress-inducible expression of at least three enzymes
from the common iceplant: myo-inositol 1-phosphate
synthase, myo-inositol O-methyltransferase and D-ononitol
epimerase. However, stress-inducible synthesis of D-
ononitol in transgenic tobacco was achieved by expressing

epimerase; (5) sorbitol-6-phosphate dehydrogenase; and (6) mannito
only myo-inositol O-methyltransferase from the iceplant
since myo-inositol synthesis in tobacco was stress-inducible.
These transgenic plants exhibited salt and drought toler-

1-phosphate dehydrogenase. (3) and (4) are unique to the iceplant.
GLYCINEBETAINE SYNTHESIS

Quaternary ammonium compounds such as glycine betaine,
proline betaine, b-alanine betaine, choline O-sulphate and
the tertiary sulphonium compound dimethylsulphoniopro-
pionate are e�ective osmoprotectants widely distributed in
bacteria, marine algae and many plant families (Rhodes
and Hanson, 1993; Gorham, 1995; Gage and Rathinasa-
bapathi, 1999). Glycine betaine is synthesized by a two-step
oxidation of choline via betaine aldehyde. Choline has a
vital role as the precursor for phosphatidylcholine, a domi-
nant constituent of membrane phospholipids in eukaryotes.
Despite this, a large proportion of free choline is diverted to
glycine betaine in plants that naturally accumulate glycine
betaine in response to stress. In the enteric bacterium,
Escherichia coli, choline is oxidized by a membrane-bound
choline dehydrogenase to betaine aldehyde, which in turn is
oxidized to glycine betaine by a soluble betaine aldehyde
dehydrogenase (Andersen et al., 1988). In certain soil
bacteria, choline is oxidized by choline oxidase, a soluble
¯avo-enzyme that generates hydrogen peroxide during the
reaction (Ohta-Fukuyama et al., 1980). The plant pathway
for choline oxidation in plants is also via betaine aldehyde
but involves di�erent enzymes. In spinach and sugarbeet,
choline oxidation to betaine aldehyde is catalysed by
choline monooxygenase, an iron-sulphur enzyme (Burnet
et al., 1995; Rathinasabapathi et al., 1997). Betaine
aldehyde oxidation to glycine betaine is catalysed by
betaine aldehyde dehydrogenase, a non-speci®c aldehyde
dehydrogenase (Trossat et al., 1997; Vojtechova et al.,
1997). Both these enzymes are stress-inducible stromal
enzymes (McCue and Hanson, 1992; Russell et al., 1998).
The synthetic routes to choline and glycine betaine as

known in spinach are shown in Fig. 3.
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When genes for choline-oxidizing enzymes from E. coli
and Arthrobacter sp. are expressed in microbial models
lacking glycine betaine synthetic ability, the transgenic
organisms synthesized glycine betaine from exogenous
choline and this conferred osmotolerance (Andersen et al.,
1988; Rozwadowski et al., 1991; Deshinium et al., 1995,
1997; Nomura et al., 1995). Microbial choline-oxidizing
enzymes have also been expressed in transgenic tobacco and
Arabidopsis thalianaÐtwo species that do not naturally
accumulate glycine betaine. Lilius et al. (1996) expressed
choline dehydrogenase from E. coli in transgenic tobacco.
Despite an apparent stress-tolerant phenotype, glycine
betaine synthesis was not con®rmed (Lilius et al., 1996).
A transgenic potato line expressing bacterial choline
dehydrogenase produced small amounts of glycine
betaineÐabout 100 nmol gÿ1 f. wtÐwhen choline was
supplied in the medium (Holmberg, 1996). This level is an
order of magnitude less than that observed in natural
accumulators and is osmotically insigni®cant. Low levels of
glycine betaine could be due to poor expression of the
transgene in this case or poor availability of the substrate.
These alternatives were not clari®ed in this study (Holm-
berg, 1996). When choline oxidase from Arthrobacter was
expressed in transgenic A. thaliana, targeting the enzyme
into the stroma, about 1 mmol gÿ1 f. wt glycine betaine was
measured (Hayashi et al., 1997, 1998). The transgenic

plants exhibited salinity and temperature stress tolerance
(Alia et al., 1998a, b). Similar results were also obtained in
rice (Hayashi et al., 1997). Although choline oxidase action
is also expected to produce hydrogen peroxide, its levels
were similar in wild-type and transformed plants (Hayashi
et al., 1997).

Expression of spinach choline monooxygenase in
transgenic tobacco resulted in transgenic plants with high
levels of this enzyme (Nuccio et al., 1998). Since tobacco
has some endogenous betaine aldehyde dehydrogenase
activity, addition of choline monooxygenase alone can be
expected to result in glycine betaine synthesis. Transgenic
tobacco expressing spinach choline monoxygenase in the
chloroplasts synthesized only very low levels (0.02 to
0.05 mmol gÿ1 f. wt) of glycine betaine in both unstressed
and stressed conditions (Nuccio et al., 1998). Exogenous
choline and choline precursors mono- and dimethyletha-
nolomine enhanced glycine betaine levels but ethanolo-
mine did not, suggesting that choline synthesis in tobacco
is limiting at the ®rst methylation of ethanolomine (Fig. 3).
Accordingly, extractable activity for the enzyme methyl-
ating phospho-ethanolomine was much less in tobacco
than that found in spinach. This suggests that glycine
betaine accumulators and non-accumulators di�er in
choline synthesis and its regulation. Hence increased
synthesis of both choline and glycine betaine needs to be
engineered, preferably under stress-inducible expression

elements, to achieve a transgenic plant accumulating



osmotic stress tolerance in plants.

in
glycine betaine. Similar conclusions were reached by
Huang et al. (2000) who expressed a microbial choline
oxidase in tobacco, A. thaliana and Brassica napus and
achieved 1±2 mmol gÿ1 f. wt glycine betaine. Upon choline
supplementation these transgenic plants made substantially
more glycine betaine. In this regard A. thaliana and
B. napus accumulated much more glycine betaine than
tobacco, suggesting that the rigidity in choline availability
is variable among di�erent species. Recent work points out
that the activity and regulation of phosphoethanolamine
methylation is the limiting factor in choline synthesis in
tobacco (McNeil et al., 2000; Nuccio et al., 2000). It is
also possible that choline transport into the chloroplast
di�ers between species (Nuccio et al., 1998; Huang et al.,
2000).

Rigidity in choline utilization or availability is not
uncommon in plant metabolism. In the evolution of the
stress-tolerant plant family Plumbaginaceae, most
members replaced glycine betaine with other equally
e�ective quaternary ammonium compounds such as b-
alanine betaine, proline betaine and hydroxy proline
betaine (Hanson et al., 1994). Part of the reason for this
`invention' appears to be metabolic, since all members of
this family synthesize choline O-sulphate, an osmopro-
tectant important for sulphate detoxi®cation (Rivoal and
Hanson, 1994). Competition for choline could therefore be
relieved by replacing glycine betaine by b-alanine betaine,
proline betaine and hydroxy proline betaine, osmopro-
tectants originating from precursors b-alanine and proline
(Hanson et al., 1994). Other osmoprotectant synthetic
pathways manipulated to obtain transgenic plants include
those of proline (Kishor et al., 1995; Nanjo et al., 1999),
fructan (Pilon-Smits et al., 1995) and trehalose
(Holmstrom et al., 1996; Goddijn et al., 1997; Romero
et al., 1997). Identi®cation of enzymes and genes involved
in the synthesis of novel osmoprotectants found in stress-
tolerant organisms can be expected to provide more such
opportunities for stress tolerance engineering (Rivoal and

RathinasabapathiÐEng
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will be useful for metabolic engineering.
ENGINEERING STRESS TOLERANCE

Osmoprotectant accumulation is only one facet of a
myriad of stress-tolerant traits found in nature. Since
oxidative stress is a component of drought and salinity,
manipulations aimed at improving oxidative stress toler-
ance have also resulted in salinity tolerance (Roxas et al.,
1997). Some of the traits, when engineered together with
osmoprotectant synthesis, can be expected to enhance
whole plant stress tolerance. This could be done either via
reiterative engineering or by crossing and selecting trans-
genic plants engineered for di�erent traits. For example,
manipulation of genes involved in ion transport together
with osmoprotectant synthesis can be expected to increase
a cell's ability to withstand salinity stress. The gene
products involved in ion homeostasis have been identi®ed
by the use of yeast model systems (Serrano et al., 1999)
and by analysing mutants altered for salt sensitivity
(Wu et al., 1996; Liu et al., 2000). This has led to

identi®cation of plant genes involved in ion transport and
compartmentation, inspiring e�ective strategies for
engineering salinity tolerant plants. Halophytic plants are
capable of salt accumulation at the vacuolar compartment
(Flowers and Yeo, 1988). In response to salinity,
halophytes accumulate Na� into vacuoles, through the
operation of a tonoplast Na�/H� antiport. This avoids
deleterious e�ects of Na� in the cytosol and maintains
osmotic balance by using the ions accumulated in the
vacuole (Glenn et al., 1999). Chloride transport into
vacuoles is via a chloride channel (Hechenberger et al.,
1996). Over-expression of a tonoplast Na�/H� antiport
protein in transgenic Arabidopsis thaliana resulted in
increases in vacuolar sodium concentrations (Apse et al.,
1999). These transgenic plants were sodium chloride
tolerant (Apse et al., 1999). Understanding the function
and regulation of other genes involved in water and ion
transport (Chrispeels et al., 1999) can be expected to
provide important tools for engineering salinity and

eering Stress Tolerance 713
REGULATING STRESS TOLERANCE

Osmoprotectant synthesis in naturally stress-tolerant
species is highly regulated by stress. In addition to the use
of stress inducible promoters for engineering osmoprotec-
tant synthesis pathways, genes involved in stress signal
sensing are additionally useful for engineering stress
tolerant plants. Genes involved in stress signal sensing
and a stress-signalling cascade in A. thaliana have therefore
been of recent research interest (Winicov, 1998; Shinozaki
and Yamaguchi-Shinozaki, 1999 for reviews). Expression of
some of the genes in the stress signal transduction cascade is
mediated by the plant growth regulator abscisic acid
(ABA); others act independently of ABA. Components of
the same signal transduction pathway are also shared by
various stress factors such as drought, salt and cold
(Shinozaki and Yamaguchi-Shinozaki, 1999). By expressing
a regulatory gene that could induce a number of other genes
involved in stress-tolerance, transgenic plants with a stress-
tolerant phenotype were achieved. For example, stress-
inducible expression of the transcription factor DREB1A in
transgenic A. thaliana resulted in improved drought, salt
and freezing tolerance (Kasuga et al., 1999). Based on
homology in stress-signalling between yeast and plants,
Pardo et al. (1998) achieved stress-tolerant transgenic plants
by over-expressing calcineurin, a protein phosphatase
known to be involved in salt-stress signal transduction in
yeast. Transcription factors involved in regulating the
expression of genes involved in osmoprotectant synthesis
METABOLIC ENGINEER'S TOOL BOX

In naturally stress-tolerant plants there is a wide variety of
adaptations to stress, many of which have not yet been
identi®ed at the molecular level. Understanding the
function of such genes determining these factors will
improve our understanding of the complexity of plant
metabolism and may provide unique opportunities for the

metabolic engineer. Progress made in understanding the
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function of genes involved in stress tolerance in A. thaliana,
not a naturally tolerant species, does, however, provide an
important basis on which to analyse other plant genomes:
the tools of `functional genomics' (Bouchez and Hofte,
1998) will expedite this progress. However, since osmopro-
tectant synthetic pathways and other metabolic adaptations
to stress are found in diverse taxa, a number of di�erent
model species need to be employed along with Arabidopsis.
Microbial genes have often been used to engineer traits
implicated in stress tolerance, but genes that have evolved in
stress-tolerant plants and their regulation will be of special
interest in the long term. Continued e�orts in the ident-
i®cation and description of stress-tolerant taxa and physio-
logical and molecular studies to understand their tolerance
mechanisms are therefore justi®ed.

Identi®cation of regulatory genes and transcription
factors involved in stress-inducible expression of osmopro-
tectant biosynthetic pathways will also be of great interest.
Tools such as vectors for multiple gene transfer (e.g. Von
Bodman et al., 1995), stress-inducible promoters and
e�cient selectable markers will also need to be developed
and evaluated. Following manipulations of enzyme-
catalysed steps, it is imperative to verify whether the
manipulation resulted in a change in the pathway ¯ux, so
that further rounds of useful manipulations could be
predicted. Metabolic control analysis will be of use to
determine ¯ux control coe�cients for manipulated enzymes
and could provide strategies as to which steps/enzymes are
the most interesting for manipulation (Stephanopoulus,
1999). Such applications depend upon developments in
analytical tools for sensitive and accurate determination of
metabolite pool sizes such as nuclear magnetic resonance,
mass spectrometry and radiotracer technology combined
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with computer modelling.
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