

PMC full text: Curr Genomics. 2011 Mar; 12(1): 30–43.

Copyright/License ► Request permission to reuse

Table 1

Selective Reports on Production of Cold Stress-Tolerant Transgenic Crops

Gene (s) / Gene product	Cellular role	Transgenic Host-Plant	Performance of transgenic plants	Reference
gpat Glycerol 3- phosphate acyltransferase	Fatty acidunsaturation	N. tabacum	Transformants showed less chilling damage to photosynthetic activity than the wild type	[86]
sod Superoxide dismutase	Dismutation of toxic reactive oxygen intermediate	N. tabacum	Transformants showed 20% higher photosynthetic activity during chilling compared to untransformed plants	[<u>116</u>]
sacB Levan sucrase	Fructan biosynthesis	N.tabacum	Transformants were more tolerant to freezing and <i>PEG</i> -mediated water stress than the wild type	[117]
cor15a Cold regulated gene	Promotes freezing tolerance	A. thaliana	Transformants showed <i>in vivo</i> enhanced freezing tolerance of protoplasts and the chloroplasts	[<u>64</u>]
mn-sod Mn- Superoxide dismutase	Dismutation of reactiveoxygen inter mediates in mitochondria	M. sativa	Transformants showed reduced injury from water deficit stress and increased winter survival	[118]
gst/gpx Glutathione- Stransferase and glutathione peroxidase	Detoxification of herbicides and toxic substances	N.tabacum	Transformants over-expressing GST/GPX showed stimulated seedling growth under chilling and salt stress	[<u>119</u>]
cbf1 CRT/DRE binding factor	Transcription factor	A. thaliana	Transformants showed regulation of several <i>cor</i> genes at the same time and showed freezing tolerance	[<u>76]</u>
dreb1 anddreb2 DRE-binding Protein	Transcription factor	A. thaliana	Transformants revealed freezing and dehydration tolerance but caused dwarfed phenotypes in transgenic plants	[81]
WCS120/COR39 CCGAC sequences like CRT/DREs in its promoter	Low temperature regulated gene	Trtricum sativum	cold inducible in monocotyledonous and dicotyledonous plants	[<u>120</u>]

Gene (s) / Gene product	Cellular role	Transgenic Host-Plant	Performance of transgenic plants	Reference
codA Choline oxidase A	Glycinebetaine biosynthesis	O. sativa	Transformants accumulated high levels of glycinebetaine and showed increased tolerance to salt and low temperature stress	[121]
codA Choline oxidase A	Glycinebetaine biosynthesis	A. thaliana	Transformants were tolerant to salt and cold	[122]
DREB1A (CBF3) DRE-binding protein	Transcription factor	Arabidopsis	Increased salt, drought and cold tolerance in nonacclimated plants	[<u>75</u>]
<i>prodh</i> Proline dehydrogenase	Proline biosynthesis	A. thaliana	The antisense transgenics were more tolerant to freezing and high salinity than wild types	[123]
CBF3 DRE-binding protein	Transcription factor	Arabidopsis	Increased freezing tolerance of cold- acclimated plants	[<u>5</u>]
ala1 Aminophospholipid ATPase 1	P-type ATPase (Transporter protein)	A. thaliana	Transformants showing down regulation results in cold-affected plants that are much smaller than the wild type	[34]
SCOF1cold- inducible zinc finger protein	Regulator of SGBF- 1 as a transcription factor	Glycine max	activate <i>COR</i> gene expression and increase freezing tolerance in non-acclimated transgenic plants	[<u>102</u>]
abi3 Abscisic acid induced protein	Transcription factor	A. thaliana	Marked increase in expression of low temperature- induced freezing tolerance accompanied by up- regulation of <i>RAB18</i> , <i>LTI129</i> , <i>LTI130</i> and <i>LTI178</i>	[13]
CuCOR19citrus dehydrin	Inhibition of lipid peroxidation	N. tabacum	Increased the cold tolerance	[89]
CBF1/ DREB1bDRE- binding protein	Transcription factor	O. sativa	The cold-responsive genes lip5, lip9, and OsDhn1 were up-regulated in the transgenic plants	[124]
DREB1A (rd29A) DRE-binding protein	Stress-inducible promoter	N. tabacum	Improved drought and low-temperature stress tolerance	[83]
OSISAP1 Zinc- finger protein	Transcription factor	N. tabacum	The transcript level of <i>OSISAP</i> 1 was increased to a very high level during a 12-h cold treatment	[125]
Osmyb4	Transcription factor	Arabidopsis	Increases chilling and freezing tolerance	[126]
HOS10 Encodes an R2R3-type protein	Transcription factor	O. sativa	Enhanced cold tolerance	[127]
ZAT12 C2H2 zinc finger	Transcription factor	Arabidopsis	Improved cold acclimation	[<u>55</u>]
Cor15amChloroplast stromal protein	Stress-inducible promoter	Arabidopsis	Enhanced cryoprotective activity	[128]
OsMYB3R-2 DNA- binding domain	Transcription factor	Arabidopsis	Overexpression of <i>OsMYB3R-2</i> leads to increased tolerance to freezing, drought, and salt stress	[93]

Gene (s) / Gene	Cellular role	Transgenic	Performance of transgenic plants	Reference
product		Host-Plant		
ACBP6Acyl-CoA-	Decline in	Arabidopsis	Overexpression of ACBP6 enhanches freezing	[<u>129</u>]
binding protein	phosphatidylcholine and elevation of phosphatidic acid		tolerance	
OsMYB3R-2 DNA-	Transcription factor	O. sativa	Overexpression of OsMYB3R-2 exhibited	[<u>130</u>]
binding domain			enhanced cold tolerance	
AtCSP3 Cold shock	RNA chaperon	Arabidopsis	Transgenic plants conferred enhanced freezing	[<u>131</u>]
protein			tolerance as compared to wild type plants hence	
			demonstrating essential role of RNA chaperones	
			for cold adaptation in higher plants	
MYBS3 DNA- binding repeat MYB	Transcription factor	O. sativa	Plays a critical role in cold adaptation in rice	[<u>99</u>]
mybc1Regulate osmotic stress tolerance	Transcription factor	Arabidopsis	Exhibited an increased tolerance to freezing stress	[132]
ThpI Thermal	Transcription factor	Arabidopsis	Enhanced low temperature tolerance in transgenic	[133]
hysteresis proteins			plants was observed by changes of electrolyte	
(Anti freeze protein)			leakage activity, malonyldialdehyde and proline	
			contents	
CBF1 CRT/DRE	Transcription factor	Solanum	Detection of higher activity of superoxide	[108]
binding factor 1		Lycopersicum	dismutase (SOD), higher non-photochemical	
			quenching (NPQ), and lower malondialdehyde	
			(MDA) content in transgenic tomato leaves suggest	
			that CBF1 protein plays an important role in	
			protection of PSII and PSI during low temperature	
			stress at low irradiance	